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Abstract. Image segmentation is a challenging task influenced by mul-
tiple sources of uncertainty, such as the data labeling process or the
sampling of training data. In this paper we focus on binary segmen-
tation and address these challenges using conformal prediction, a fam-
ily of model- and data-agnostic methods for uncertainty quantification
that provide finite-sample theoretical guarantees and applicable to any
pretrained predictor. Our approach involves computing nonconformity
scores, a type of prediction residual, on held-out calibration data not
used during training. We use dilation, one of the fundamental operations
in mathematical morphology, to construct a margin added to the borders
of predicted segmentation masks. At inference, the predicted set formed
by the mask and its margin contains the ground-truth mask with high
probability, at a confidence level specified by the user. The size of the
margin serves as an indicator of predictive uncertainty for a given model
and dataset. We work in a regime of minimal information as we do not
require any feedback from the predictor: only the predicted masks are
needed for computing the prediction sets. Hence, our method is applica-
ble to any segmentation model, including those based on deep learning;
we evaluate our approach on several medical imaging applications. Our
code is available at https://github.com/deel-ai-papers/consema.

Keywords: Image Segmentation - Conformal Prediction - Uncertainty
Quantification.

1 Introduction

Uncertainty Quantification (UQ) is essential for ensuring the reliability of Ma-
chine Learning (ML) models in critical fields like medical imaging [21]. In image
segmentation, uncertainties can stem from various sources, including data la-
beling and sampling. If such predictions are part of a complex system, such as
an automated aid in medical diagnostics, one needs to rigorously quantify the
prediction errors. We use Conformal Prediction (CP) [38/18], a framework that
provides model- and data-agnostic methods for UQ with finite-sample theoret-
ical guarantees, applicable to any pretrained predictor. It constructs prediction
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Fig.1: Example: White Blood Cell (WBC) dataset [39], prediction (nucleus)
with UniverSeg [I1]. (a) Input image X. (b) Sigmoid scores f(X), assumed to
be unavailable. (c¢) ground-truth mask Y. (d) predicted mask Y. (e) intersection
of Y and Y in purple (true positives). (f) prediction set C A(A) adding a margin
via A = 6 dilations of Y by structuring element B = @ the missing pixels (e,
in red) are covered, as per nonconformity score in Eq. (3 .

Colors B: true positives; [: dilation margin; ff: false negatives recovered.

sets that contain the truth at a confidence level defined by the user, using held-
out i.i.d[l] calibration data from the same distribution as production data. We
focus on binary segmentation, where each pixel is classified as either belonging
to the object (e.g., a tumor) or the background.

Our contribution. We propose a novel approach to CP for image segmenta-
tion, Workmg with a minimal set of hypotheses: only the binary prediction masks
(Y Fig. |1d)) are needed. Unlike existing methods, we do not require access to
the predictor f(-) nor its feedback (e.g., logits); thus, our method is applicable
to black-box predictors, e.g., embedded in third-party software and machines or
derived from complex foundation models [24].

We build CP sets as margins to be added on the contours of masks (Fig.
using morphological dilation. The size of these margins depends on the noncon-
formity scores (Eq. [3) measured on held-out calibration data. This method can
be used to validate a model (knowing the typical error we incur into, on produc-
tion data), but also to provide a set of pixels (the “conformal margin”) that are
likely to contain the part of ground truth we might have missed. Although we
focus on medical imaging, it is applicable to any use case and any segmentation
model.

1 CP also applies to exchangeable data, which is a less strict requirement.
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2 Background

Conformal Prediction (CP) [38J3I12] constructs prediction sets C(X) that contain
the ground truth Y with probability P{Y € C(X)} > 1 — a, where o € (0,1)
is a user-specified error level (also “risk”). We use inductive (or “split”) CP [28],
which computes nonconformity scores (prediction residuals) on held-out, labeled
calibration data that are independent of the training data and follow the same
distribution as the test data. The size of C(X) is often interpreted as a measure
of uncertaintyﬂ as it depends on a quantile of the nonconformity scores.

Conformal Prediction in image segmentation. Using a threshold A € [0, 1] on
the sigmoid scores, [6/409] construct prediction sets Cy(X) = {all pixels whose
sigmoid score is > 1 — A} with distribution-free risk-controlling procedures in bi-
nary segmentation. In [27], they extend the method of [4] to account for multiple
classes at once, where each class channel can be seen as a binary mask. Further-
more, [I3] builds inner and outer prediction sets that capture the ground truth
with high probability, and they propose a nonconformity score based on the dis-
tance to the boundary of the masks. The methods of [23][7] use a spatially-aware
weighting of the scores, under the hypothesis of pixel-wise exchangeability. Our
work is also related to CP for object detection [I7U222JTI36], where a “conformal”
margin is added around the bounding boxes.

2.1 Nested prediction sets

Following the formulation of CP based on nested prediction sets of [18], let X and
Y be the input features and target; let {Cx(X)}aca be a sequence of prediction
sets, where A is an ordered set (e.g., A C RT or A C N). This is said to be a
sequence of nmested sets when, for any A < X, we have C5(X) C Cx(X). The
nonconformity score induced by Cx(X) is then r(X,Y) = inf{A € 4 : Y €
CA(X )} In words, the score is the smallest parameter A such that the prediction
set built from features X contains the true Y (see [18] for more examples).
Given calibration data (X;,Y;)",, one can compute the empirical quantile \ in
(1) which is then used at inference to build C5(Xtest)-

A= [(n+1)(1 — a)]-th largest score in (r(X;, YZ))ZL:1 (1)

3 Methods

Let (X;,Y;)"; be a sequence of calibration points where X; is the input image,
and Y; its ground-truth mask labeled by an expert. We notate with Y the pre-
dicted mask and we assume that the segmentation predictor f is unknown or
inaccessible, based on deep learning or any other algorithm. Note that Y and Y
are sets of points (i.e. pixels), hence the usual set notation applies.

For binary segmentation, we aim to avoid false negatives in the prediction:

that is, every ground-truth pixel is contained in the predicted mask, denoted as

? CP does not distinguish [27] between aleatoric and epistemic uncertainty [20].
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Y C Y. To do so, the core of our proposal is to add a margin u(}?) around the
prediction Y so that we cover all true positives: the prediction set is Cy (X

Y U u(Y) and the condition becomes Y C CA(X) With respect to Fig. [lc,
our method statistically covers the red pixels (false negatives), whereas the blue
pixels are false positives and deemed innocuous.

3.1 Nested sets via morphological dilations

We use morphological dilation, the fundamental operator of mathematical mor-
phology [2613TI3330JT6I10]. Binary dilation dp(-) on a discrete set (e.g., a binary
digital image) is performed using a structuring element (SE) B, which defines
pixel connectivity. Common choices include a 3 x 3 cross (HH, 4-connectivity)
and a 3 x 3 square ([, 8-connectivity) [16]. One iteration of dilation passes B
over the image and assigns a value of 1 to all zero-valued pixels that have at
least one neighboring 1-pixel under B.

Our proposal for the prediction set is to choose a structuring element B and
apply a dilation A € A C N times:

Cx(X):=(épodpo---0dp)(Y )—63( ), (2)

A iterations

with 09(Y) := Y and 6}(Y) := 85(6% 1(Y)). Also, the set u*(Y) = Cx(X)\ Y
is what we call the margin of C(X). Morphological dilation is extensive, so the
dilated set always increases in size and contains the original set, until the whole
image is covered. It follows that for any (nonempty) prediction mask Y, the
sequence (6% (Y))aea forms a sequence of nested sets. Furthermore, it would be
straightforward to extend this method to negative margins, using erosions on
the background if the predictions were over-covering the ground truth.

Note that any operation that preserves the nested conditions of Sec. is
applicable, such as chaining several structuring elements to induce specific shape
on the margin or having SE’s of variable size. For example, it is possible to
obtain the distance-based score of [I3] doing a single dilation with a structuring
element B()\) that grows with A, so that B(A) C B()\') for any A < X. Then,
the prediction set is Cx(X;) = (53()\ (Y;), where, for A = 0, we have B(0) := @

and 5@(/\) := Y. This can be a discrete approximation of a disc or any other
shape. As above, it also holds that (6}, A)( ))aca is a sequence of nested sets.

One must rely exclusively on prior knowledge or training data when selecting
the morphological operation and B. Using the calibration data for this purpose
would violate the i.i.d. or exchangeability assumptions required by CP.

Nonconformity score. For a calibration pair (X;,Y;), we define the score as
the smallest value A € N (i.e., number of dilations) such that at least 7 x 100%

3 We write Cx(X) to be consistent with the literature, although we could write Cx (i}),
since we do not need access to X nor the underlying predictor f.
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of the ground-truth pixels in Y; are contained within the prediction set Cy(X;),
where the hyperparameter 7 € [0, 1] is the coverage ratio [27]. More formally,

Y NCA(X;
T(Xz'7Yi)=inf{)\eN : ||YA'|()|ZT}’ 3)
where | - | is the number of elements (pixels) in a set. In some rare events,

demanding to cover the entire truth can be overly conservative, that’s why we
introduce the hyperparameter 7 that enables a trade-off. For instance, a 7 =
0.999 implies that the user can accept up to 0.1% of false negatives in Cy(X).

Since by construction we have that for any A < X, CA(X;) C Cx (X;), this
can be applied into the formulation of conformal nested prediction sets [I8//4]
(see Sec. and the following holds:

Theorem 1. Let \ be computed as in Eq. . Under the hypotheses of inductive
conformal prediction [28[18/4)], for the nonconformity score in induced by
prediction sets (2)), it holds true that, for a new point (Xiest, Yiest),

|Ytest N Cj\ (Xtest) I

P
|K§est|

>7|>1—qa. (4)

Proof. For any 7 € [0,1], it suffices to set a binary loss to £(Cy(X),Y) =
1{% # 7} (monotone in \) and apply Conformalized Risk Control (CRC)

as per Theorem 1 in [4], where they show that CRC with binary losses and CP
are statistically equivalent. [J

The CP guarantee in Eq. is said to hold marginally, i.e., on average over all
possible inputs Xies; and on average over repeated draws of the calibration and
test samples; see [3] for statistical details. Eq. implies that, for an a priori
fixed «, the sample size must be n > é — 1. Similarly, for a fixed calibration set

of size n, the user can choose (prior to calibration) an error value o > ﬁ_l

Conformalization algorithm The “conformalization” of a (unknown) pre-
trained segmentation predictor f boils down to:

set a € (0,1) and collect labeled calibration data (X;, Y;)" ;, withn > 1 —1;
fix a coverage ratio 7 € [0,1] and a B for prediction set Cy(+) in Eq. (2));
compute the nonconformity scores (r(X;,Y;));_; as per Eq. (3);

compute the empirical quantile \ as in Eq. ;

for a test prediction fftest, use \ in Ca(+) and compute the dilated mask.

CU L=

4 Experiments

We ran our experiments with two segmentation models and three dataset groups.
First, we used the pretrained UniverSeg model [I 1]E| We tested it on two public

4 https://github.com/JJIGO/UniverSeg, accessed 2024-04-08.


https://github.com/JJGO/UniverSeg

6 L. Mossina & C. Friedrich

datasets as also evaluated in their paper: WBC (White Blood Cells) [39]"] and
OASIS [25,19ﬂ a neuroimaging dataset. As in [4], we also ran experiments using
the PraNet [I4] modeﬂ and the collection of datasets it was trained on, covering
polyp segmentation in colonoscopy images (referred to as Polyps): ETIS [32],
CVC-ClinicDB [§], CVC-ColonDB [34], EndoScene [37], and Kvasir [29].

For conformalization, we randomly shuffled and partitioned (with a ratio of
50/50) the original test set into calibration and proper test sets, yielding 50
calibration samples for WBC and OASIS, and 250 for the Polyps dataset. We
then applied the algorithm in Sec. 3.I] and compute the following metrics:

. 1 TMtest er N Cx Xz
Empirical coverage:  Cov(A;C,7) = 1 {M > T} , (5)

Ntest i=1 lez|
. 1 Ntest CA X
Stretch [2): o(\;C) = A(A )l (6)
Ntest 7 ‘YH

Statistical coverage being a random quantity, the empirical coverage is the evalu-
ation of a realization of Eq. . The stretch ¢ tells, on average, how much larger
the prediction sets are with respect to Y (lower is better). We also report the
average empirical quantile 5\, which indicates how many dilations were necessary
to attain the specified coverage. For all the metrics, we report the average and
standard deviation over 36 runs (i.e., shuffling and partitioning the data).

4.1 Results

The results in Table [I] show that, as expected, the empirical coverage is greater
than the nominal value 1 — o on average over multiple runs, that is, our CP
procedure constructs statistically valid prediction sets (Cov > 1 — «). As for the
size of the prediction set, we see how the stretch and )\ increase for higher a and
T, to compensate for the stricter requirements imposed by the user. In Table
we can also see how CP can be used to evaluate a model: for a given risk «
and coverage ratio 7, the margin is small (e.g., 1.056 for WBC and UniverSeg
at @« = 0.1 and 7 = 0.9) when the underlying predictor is already satisfying
(empirically) the statistical requirements.

Finally, despite working in the restrictive setting without feedback from the
predictor (no sigmoid scores), we show that there are cases where more informa-
tion does not improve the prediction sets: for PraNet on the Polyps dataset, we
also compute conformal sets using a threshold on the sigmoid (see Sec. [2} so that
as it is lowered, more pixels are included. The average stretch across several con-
figurations (Tab. |2) is considerably larger than with our method. In this model

® Distributed as open source at: https://github.com/zxaoyou/segmentation_WBC.
We acknowledge the Jiangzi Tecom Science Corporation, China, and the Cella Vision
blog (http://blog.cellavision.com/) for providing the data.

5 Source: sites.wustl.edu/oasisbrains, obtained via github.com/JJGO/UniverSeg,

7 We reused the precomputed predictions and dataset as partitioned (training, test)
by the authors of [4]. See |github.com/aangelopoulos/conformal-prediction.
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Model Dataset 1—« T Cov o} avg A
PraNet Polyps 0.9 0.9 0.909 (0.023)" 1.253 (0.131)" 6.083 (2.980)%
0.9 0.99 0.898 (0.029) 1.780 (0.270) 17.500 (5.593)
0.9 0.999 0.904 (0.023) 2.031 (0.309) 22.500 (5.969)
0.95 0.9 0.953 (0.020) 3.093 (0.857) 41.389 (14.349)
0.95 0.99 0.955 (0.019) 4.144 (0.971) 58.611 (14.946)
0.95 0.999 0.962 (0.019) 4.840 (0.959) 69.167 (14.238)
UniverSeg WBC 0.9 0.9 0.952 (0.044) 1.108 (0.065) 1.056 (0.630)
0.9 0.99 0.932 (0.055) 1.646 (0.261) 6.278 (2.514)
0.9 0.999 0.928 (0.061) 1.865 (0.284) 8.389 (2.686)
0.95 0.9 0.984 (0.033) 1.449 (0.365) 4.361 (3.523)
0.95 0.99 0.985 (0.024) 2.448 (0.664) 13.667 (5.826)
0.95 0.999 0.985 (0.025) 2.776 (0.735) 16.528 (6.236)
UniverSeg OASIS 0.9 0.9 0.969 (0.040) 1.774 (0.061) 4.500 (0.507)
0.9 0.99 0.941 (0.049) 2.198 (0.034) 12.333 (0.756)
0.9 0.999  0.940 (0.038) 2.247 (0.030) 15.417 (0.996)
0.95 0.9 0.997 (0.007) 1.845 (0.040) 5.194 (0.401)
0.95 0.99 0.990 (0.014) 2.232 (0.033) 14.222 (1.124)
0.95 0.999 0.993 (0.014) 2.259 (0.028) 17.917 (0.937)

Table 1: Experiments with structuring element B = H# averaged across 36 runs.
t: standard deviation.

and dataset configuration, our method performs better than approaches that use
more information (e.g., sigmoid scores): not only it produces statistically valid
sets, but it also avoids introducing artifacts in the conformal margin.

An example of this phenomenon is visible in Fig.[2d] where the conformalized
margins are uninformative; possibly due to the type of training loss [5], the values
of the sigmoid fail to serve as a proxy of uncertainty. On the other hand, in cases
where distant zones are missed by the segmentation mask Y, our method cannot
recover those areas except by using a large margin. In this case, using the sigmoid
(if available), may be a viable option; in a sense, our approach can be seen as
complementary to other CP methods.

Model Dataset 1 — o T (bmorphology ¢thresholding

PraNet Polyps 0.9 0.9 1.253 1.218
0.9 0.99 1.780 8.950
0.9 0.999 2.031 15.001
0.95 0.9 3.093 3.010
0.95 0.99 4.144 15.189
0.95 0.999 4.840 16.062

Table 2: Comparison with the first rows in Tab. 1| Here, conformalization is done
by morphological dilation and thresholding of the sigmoid [4] (see Sec. .
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(b) (c) (d) ()

Fig. 2: Example: Polyps dataset (see Sec. , prediction with PraNet [14]. For
a =0.10 and 7 = 0.99: (a) input image, (b) ground-truth mask, (c) predicted
mask, (d) prediction set via dilation (Eq. [2), (e) prediction set via thresholding
on sigmoid (as in [4]). Pixels in light blue (Ff) are the margin: in (d) it contains
only pixels contiguous to the prediction (c¢) while in (e), it does not necessarily
do so because of the underlying sigmoid scores (not shown). As shown in Tab.
for this model configuration the latter has much larger stretch (Eq. |§|, lower is
better). White pixels represent the background.

5 Conclusion

In this paper, we proposed an approach that combines a fundamental operation
in mathematical morphology, dilation, with Conformal Prediction to construct
statistically valid prediction sets for image segmentation. We achieved this in
a restrictive framework with no internal knowledge of the model (e.g., sigmoid
scores), where only the prediction masks are required. We managed to preserve
the original shape of the prediction and to remain robust to aberrant scores from
such models.

Although we applied our algorithm to several benchmarks in medical imaging,
our method can be used with any segmentation method that returns binary
masks (e.g., standard thresholding/clustering approaches or more advanced ML
models). This includes ML models that lack transparency (black boxes) and
whose details are hidden from the end users, as well as algorithms that were not
originally conceived for uncertainty quantification.

Perspectives. A promising next step is to extend morphological sets to
multiclass and instance segmentation, which are commonly used in the field of
medical imaging. In their basic form, CP sets do not adapt to the input instance,
and the theoretical guarantee holds on average: some images may be “harder” and
require a larger margin, and vice versa. This is an active field of research in CP
[1509], and the literature on Mathematical Morphology could provide new tools
to build adaptive morphological prediction sets using training data. Finally, we
consider combining morphological sets with other approaches (e.g., thresholding)
to leverage their respective strengths [35].
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