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Abstract. To achieve accurate diagnostic outcomes, it is often neces-
sary to acquire multiple series of magnetic resonance imaging (MRI)
with varying contrasts. However, this process is time-consuming and im-
poses a significant burden on patients and healthcare providers. While
diffusion models have emerged as a highly effective tool for image syn-
thesis, they face challenges in handling the complexities of real-world
clinical data and may distort vital information during medical image
synthesis. To address these issues, we propose MRDIff, a novel diffusion
model for multi-contrast MR image synthesis. MRDiff leverages the in-
trinsic relationship between different contrast images to derive shared
anatomical information based on MR physics equations. Our approach
integrates MR physics-based signal regularization for proper content fea-
ture generation and employs self-content consistency training to capture
accurate anatomical structures. Experimental results demonstrate that
MRDiff outperforms existing methods by generating diagnostically valu-
able images, highlighting its potential for clinical applications in MR
image synthesis.

Keywords: Multi-contrast imaging - Image synthesis - Diffusion mod-
els.

* Corresponding authors



2 F. Author et al.

1 Introduction

Magnetic resonance imaging (MRI) is a preferred non-invasive diagnostic tool
essential for patient diagnosis and treatment. Providing a range of MRI modal-
ities offers additional information that characterizes patients and improves pa-
tient management. However, acquiring multi-contrast MR images is more time-
consuming and expensive compared to other imaging modalities such as Com-
puted Tomography (CT) and X-ray imaging. This poses a significant burden
on both patients, particularly those who are uncomfortable lying still for long
periods, and healthcare facilities [11,7].

The advent of MR image synthesis has opened the possibility of significant
reductions in scan time. As deep learning-based methods have evolved, numerous
studies have been conducted to improve MR image synthesis. Recent studies
leveraging generative adversarial networks (GANSs) have demonstrated successful
performance based on multi-constrast MR images [14, 23, 24, 26,9, 3|. However,
GAN-based models are challenged by the instability of training in achieving
convergence [21]. Although these models demonstrate remarkable efficiency in
processing clean images, their performance also significantly declines when faced
with noise or other disturbances, making them challenging to use in practical
applications.

Diffusion models (DMs) [6, 18,4] have achieved state-of-the-art performance
in synthesizing images. DMs are proficient in training and generating complex
and diverse images, which reduces the risk of modality collapse and enables
more stable training processes [10]. However, most studies have been conducted
in noise-free environments [2] and therefore do not fully cover real-world sce-
narios where noise is often present in MR images. This noise affects various
textures depending on the imaging equipment and scanning parameters used.
DMs are introduced in the field of medical image synthesis to generate high-
quality images [8,16,15,13,17]. Despite these advancements, the preservation
of anatomical integrity during the synthesis of high-quality images presents an
ongoing challenge.

In this study, we propose a novel diffusion model for MR image synthesis from
multi-contrast images with MR physics-based content regularization (MRDiff).
MRDiff focuses on generating MR images with high-frequency details effectively
while considering anatomical structure. First, we leverage the principles of MR
physics to extract salient features essential for the synthesis of target contrast
images. These fundamental tenets of MR physics are operationalized in the la-
tent space. The hypothetical quantitative image features derived through MR
physics are designed to be combined with the properties of the diffusion model to
regularize the content features. Second, we introduce a self-consistency training
mechanism to further refine the content features. This mechanism ensures that
the anatomical information remains stable across various perturbed generations,
thereby enhancing the model’s capacity to capture the underlying physical and
anatomical properties.

Our model is evaluated on two datasets: an in-house spine dataset, which in-
cludes T1-weighted (T1-w), T2-weighted (T2-w), and fat saturation T2-weighted
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Fig. 1. MRP-Diff for MR image synthesis. &, is a noisy MR contrast image at randomly
sampled noise levels. y is clean multi-contrast images.

(T2 FS) images, and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset [1], which consists of Proton Density (PD), T1-w, and T2-w MR images.
Experimental results demonstrate that MRDiff outperforms existing methods in
multi-contrast MR image synthesis, effectively bridging the gap between theo-
retical MR physics and practical image generation.

2 Methods

This section presents the proposed architectural framework, namely MRDiff,
which is integrated into the diffusion model to learn the relationship between
multi-contrast images and to generate a target MR image from given multi-
contrast inputs. Our approach leverages the decomposition module for its supe-
rior ability to capture high-frequency textures, and the MR physics to recognize
the intrinsic relationship between multi-contrast images, improving the quality of
the reconstructed and synthesized images. The overall framework of our method
is illustrated in Fig. 1.

2.1 Conditional Diffusion Model

For a training sample zo € R"*%X! where h and w denote the height and
width of the image, the subscript 0 indicates that the sample represents the
original data. We set the multi-contrast images y € R"*%*2 as the condition.
We aim to model the distribution of xq, which is p(zo | y). In the forward
diffusion process, x( is gradually perturbed by adding Gaussian noise, resulting
in 1, o, ..., 1, which approximates the normal distribution 7 ~ A(0,I). This
process is described by a Markov chain, where ¢ (x; | ;—1) is defined according
to a predetermined variance schedule 31, Bo, ..., B as:

q (¢ ‘ Ti_1) = N (th; Vv1i- Btwt7175t1> . (1)

Due to the properties of Gaussian distribution, x; is directly sampled by:

q(zy | o) =N (@4 Vaumo, (1 — @) I), (2)
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where oy = 1 — 3; and a; = HiT:1 ;.

We desire to synthesize image through sampling from p(xzo | y), achieved
by iteratively sampling from p(z;—1 | ¢, y). During the training, encoder E,
decoder D¢, and generator Gy are trained to predict zy from x, and restore y
from y as an autoencoder by optimizing the objective with I loss, leading to :

LG = Eayy.ct |20 = Go(Es(me, v, )], (3)

and
2
Lp = Eagyea ||y = De(Es(@r,y. )] (4)

Encoder Ey4 projects both x; and y, allowing for understanding anatomical
information. Decoder D¢ focuses on reconstructing given multi-contrast data y.
Generator Gy receive features from the encoder and creates the target contrast
image. Our model focuses on predicting a denoised image denoted by .

2.2 Frequency-aware Decomposition

To effectively capture high-frequency details, our model employs two types of op-
erations: the discrete wavelet transform (DWT) and the inverse discrete wavelet
transform (IWT) [5]. Given an input image x; and y are decomposed into low
and high subbands through Haar wavelet decomposition. Each matrix is decom-
posed into four distinct subbands: f,, = (fLE fLH gHL thH} € RzX5X¢ for

Ty Y xy Y Xt I
w

z, and f, = {ij,fjH,fijfH} € R2*%%¢ for y. The final output of the
decoder represents a decomposed feature for low- and high-frequency compo-
nents. This particular structure derived from frequency components aids in the
reconstruction of g, where 4 is the prediction through IWT. Similarly, the gener-
ator synthesizes the target contrast image leveraging a hypothetical decomposed
feature with IWT. As depicted in Eq. (3) and Eq. (4), the objective for optimiz-
ing focuses on xy and y, guiding each decomposed feature to effectively learn
the information corresponding to both low and high-frequency components.

2.3 MR Physics-based Architecture Design

By utilizing the decomposition and feeding into the encoder block, latent feature
e; is yielded to subband-specific features. Therefore, the IWT operation followed
by convolution block is used to generate the quantitative map features as follows:

h, = I, (e;) = Conv(IWT(e,)), (5)

where by = {h]*,hT2 h{°}. To guide h; to the quantitative map as content
features, we leverage the MR physics, which can facilitate the accurate modeling
of the physical properties underlying MR imaging, leading to:

TR _TE

So(1—exp Tt )exp Tz, (6)
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where TR and TE denote specific repetition time (TR) and echo time (TE) pa-
rameters used within MRI scanning protocols. The signal follows the MR physics
of the spin-echo pulse sequence. Sy is the initial signal intensity, indicating the

signal strength when fully aligned with the external magnetic field. exp_%% ac-
counts for the attenuation due to the relaxation process 717, where T; is the
longitudinal relaxation time. Similarly, exp_% captures the attenuation due
to the T5 relaxation process, where T5 is the transverse relaxation time. This
equation allows for analyzing tissue characteristics.

The MR physics is exploited in latent space to capture essential structural
and physical information relevant to multi-contrast MR images. The MR physics
aims to reflect style features (i.e., contrast) with content features (i.e., anatomical
structure), providing a basis for the reconstruction of multi-contrast images. To
further enhance the feature extraction process for each frequency band, DWT is
employed for separating the features obtained from MR, physics into four discrete
subband features. This process results in the generation of features corresponding
to each subband. The MR physics modulation process is represented as

TR TE
M,(ey; TR, TE) = DWT(Conv(h°(1 —exp "t )exp ")), (7)
where TR = {TRy,TRy} and TE = {TE;,TE>} from MR pulse sequence
parameters y. The subband features are concatenated and subsequently fed into
the decoder.

The generator Gy receives only the content features that contain informa-
tion on the anatomical structure, which are guided by the characteristics of
the quantitative map. The decoder D¢ receives the modified features injected
in style, which contain anatomical and contrast information. These features are
guided by the MR physics equations. The objective function for reconstruction
only is rewritten as follows:

Lp = oyt || = De(Ma(Eola,y, )] ®)

2.4 Self-content Consistency Training

By the random sampling inherent to the diffusion model, the input data is repre-
sented as ¢y = {x+,, Zt,, ..., T+, | With a consistent level of noise. Simultaneously,
the corresponding encoder features are denoted as e; = {ey,, eq,, ..., ey }. It is
indicated that the set of e; exhibits variability due to the variations in ;. How-
ever, since the given multi-contrast images y have the same anatomical struc-
ture information, they inherently converge to a single point that represents the
shared anatomical structure. We define a global content feature e; to represent
the anatomical information shared across multiple variants, leading to:

N
_ 1
€ = NZIEd) (wthyvt)' (9)
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Each local content feature e; and global content feature €, is trained with l5 loss
to ensure that the generated features converge toward a consistent representation
of the anatomy. Our content consistency loss is defined as follows:

Loer = Ewo’y,e,t,N [HEdJ (mtv y7t> - ét”%] . (10)

As a result, the total loss function of the encoder, MR physics module, de-
coder, and generator, Li,q;n is defined as the accumulation of the respective loss
functions as follows:

Lirgin = MLe + XeLp + AsLcer, (11)

where A1, Ao, and A3 are the parameters of each loss function, respectively.

3 Experiments and Results

3.1 Setup

Dataset. The ADNI dataset [1] consists of a total of 737 MRI scans from non-
cognitively impaired (NC) individuals and Alzheimer’s Disease (AD) patients.
There are three different contrasts: T1-weighted Magnetization Prepared Rapid
Gradient Echo (MP-RAGE), T2-weighted Turbo Spin Echo (TSE), and Proton
Density (PD) TSE. For T1-weighted MP-RAGE, the TR ranges from 6.608 ms
to 10.4 ms, TE varies between 2.84 ms and 4.436 ms, and the inversion time
(TT) is set at 1000 ms. The T2-weighted TSE shows TR ranging from 2700 ms
to 5650 ms, with TE values spanning 95.22 ms to 101.84 ms. For PD TSE, the
TR values range from 2700 ms to 5650 ms, and the TE values range from 9.78
ms to 11.016 ms. For training, 70% of the dataset was randomly selected, while
for testing, 100 subjects with 1000 slices were randomly chosen.

The spine dataset consists of two subsets collected from Gangnam Sever-
ance Hospital in Seoul, Korea. The first spine subset (Subset 1) includes MRI
scans from 240 subjects. These scans encompass subjects without specific dis-
ease considerations. The second spine subset (Subset 2) comprises scans from
70 subjects who were examined for bone metastasis or red marrow hyperplasia.
Each subject provided seventeen slices for three different contrasts: T'1-weighted
TSE, T2-weighted TSE, and T2 FS TSE. The pulse sequence parameters were
set for each contrast: T1-weighted TSE had a TR of 450 ms and TE of 9.8 ms.
T2-weighted TSE parameters were TR of 3760 ms and TE of 100 ms. Lastly,
for T2 FS TSE, the TR was 4580 ms, and TE was 113 ms. Subset 1, containing
2040 slices, was used for training, while Subset 2, with 1003 slices, was used for
testing.

All datasets were approved in advance by the institutional review board.
Datasets were only available to authorized researchers for research purposes.
Metrics. In evaluating the performance of MRDiff, we employ widely recognized
metrics: Peak Signal-to-Noise Ratio (PSNR) (dB) [20] and Structural Similarity
Index (SSIM). Feature Similarity (FSIM) [25] is also used to evaluate structure
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Table 1. Quantitative results of the comparison study on two datasets (in-house and
ADNI dataset). The best PSNR, SSIM, FSIM, and GMSD values are in bold. Paired
t-tests were utilized to evaluate the statistical difference between the proposed method
and other comparative methods (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Dataset  Methods PSNR(dB) 1 SSIM 1 FSIM 1 GMSD |
In-house HINET|26]  27.33£2.34*** 0.7938+0.0606** 0.8765+0.0316* 0.1035+0.0250***
ResViT|3] 28.12+2.72"*  0.8056+0.0707*** 0.8826+0.0331"** 0.0964+0.0266™**
BlochGAN]J9] 28.244+2.70"  0.8136+£0.0695"* 0.8868+0.0332  0.0940+0.0263"
CM][19] 25.98+2.28"** 0.7945+0.0564™" 0.8526+0.0287*** 0.1173+0.0240™**
cDPM][16] 28.36+3.05 0.8051+0.0802"** 0.890940.0372 0.0925+0.0288"
M2DN][13] 25.00+1.94""* 0.7835+£0.0643*** 0.8468+0.0280** 0.1358+0.0237***
MRDiff 28.54+3.41 0.8228+0.0624 0.8893+0.0357 0.0913+0.0292
ADNI HINET[26] 19.4741.73"** 0.7350£0.0552"** 0.865740.0328"** 0.1842+0.0245"**
ResViT|3] 19.62+1.90*** 0.733540.0618"** 0.8658=+0.0372*** 0.184440.0289"**
BlochGAN]|9]| 19.674+2.17*** 0.73514+0.0694*** 0.8680+0.0429*** 0.1841+0.0315"**
CM][19] 18.354£2.08™** 0.751040.0690** 0.8600+£0.0341*** 0.18574+0.0451""*
cDPM][16] 20.0742.30"** 0.75684+0.0839"" 0.8739+0.0434* 0.1797+0.0331***
M2DN]13| 18.77+1.25"** 0.757640.0451"** 0.8620+0.0233*** 0.187540.0165"**
MRDiff 20.78+2.33 0.7715+0.0757 0.88041+0.0416 0.1727+0.0313

Tl-w T2-w T2 FS HINET ResViT BlochGAN cM cDPM M2DN Ours
1 1 1

g2z

Fig. 2. Qualitative results of the comparison study on the in-house spine dataset.

similarity. Gradient Magnitude Similarity Deviation (GMSD) [22] is utilized to
evaluate the texture similarity of the generated images. To assess statistical
differences in the assessment results, paired t-tests [12] are used.
Implementation Details. We utilize a UNet-based ADM [4] as our MR image
synthesis model. The model is trained on the in-house and ADNI datasets for
300k and 350k iterations, respectively. Training is conducted using an Adam op-
timizer with a learning rate of 2x 10~% and a batch size of 8. The forward process
is set to 1000 timesteps during training. During inference, MRDiff implements
the reverse diffusion process to synthesize MR images in 50 sampling steps. We
set N, A1, Ao, and A3 as 3, 1, 1, and 0.01.

3.2 Results

We selected six recent state-of-the-art (SOTA) image synthesis methods, includ-
ing HiNet [26], ResViT [3], BlochGAN [9], CM [19], ¢cDPM [16], and M2DN
[13]. The quantitative comparisons are presented in table 1, where our method
outperforms existing approaches across most evaluation metrics. These improve-
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Fig. 3. Qualitative results of the comparison study on the ADNI dataset.
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Fig. 4. Effect of model components. (a) represents the results for the in-house spine
dataset, and (b) represents the results for the ADNI dataset.

ments highlight our method’s capability to effectively capture complex details
and structural information in MR images. The qualitative results of the compari-
son study are presented in Fig. 2 and Fig. 3. The images in the second row, which
are enlarged versions of the areas marked with yellow boxes in the first row, re-
spectively, highlight specific regions for detailed evaluation. As depicted in Fig. 2,
each comparison method correctly reproduces contrast and texture and closely
matches the reference images. However, regions of edema within the vertebral
bodies, as indicated by the red arrows in the enlarged images, are not accurately
captured by most of the methods evaluated. MRDIff correctly depicts these areas
and the region is bright enough. Fig. 3 illustrates that comparative methods are
successful in achieving adequate levels of contrast in relation to reference images.
However, within the axial views, the comparison methods inaccurately represent
specific regions related to the ventricles and cortex, highlighted by red arrows
in the enlarged views. In contrast, MRDIiff accurately describes these regions,
ensuring fidelity without significant distortion.

Ablation studies were conducted to determine the significance of each com-
ponent within our method. Fig. 4 shows the results of the effect of the model
components. It shows that utilizing Lg outperforms other existing methods. The
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addition of other proposed components, such as Lp without modulation of MR
physics M, Lp, and Locor, leads to improved performance. Although there is a
slight reduction in PSNR values, an analysis of both PSNR and SSIM metrics
across diverse datasets reveals an overall upward trend in performance. When
all components are integrated, our model demonstrates superior performance in
the synthesis of MR images.

4 Conclusion

In this study, we propose a multi-contrast MR image synthesis method by inte-
grating an encoder-decoder-generator architecture with MR physics-based and
CCT loss. The experimental results indicate that the MRDiff outperforms ex-
isting networks in the multi-contrast datasets. These results demonstrate the
potential of our approach to revolutionize medical imaging by providing more
reliable and detailed visualizations to improve patient diagnosis and treatment.
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