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Abstract. In high-stakes medical applications, consistent answering across
diverse question phrasings is essential for reliable diagnosis. However, we
reveal that current Medical Vision-Language Models (Med-VLMs) ex-
hibit concerning fragility in Medical Visual Question Answering, as their
answers fluctuate significantly when faced with semantically equivalent
rephrasings of medical questions. We attribute this to two limitations:
(1) insufficient alignment of medical concepts, leading to divergent rea-
soning patterns, and (2) hidden biases in training data that prioritize
syntactic shortcuts over semantic understanding. To address these chal-
lenges, we construct RoMed, a dataset built upon original VQA datasets
containing 144k questions with variations spanning word-level, sentence-
level, and semantic-level perturbations. When evaluating state-of-the-art
(SOTA) models like LLaVA-Med on RoMed, we observe alarming perfor-
mance drops (e.g., a 40% decline in Recall) compared to original VQA
benchmarks, exposing critical robustness gaps. To bridge this gap, we
propose Consistency and Contrastive Learning (CCL), which integrates
two key components: (1) knowledge-anchored consistency learning, align-
ing Med-VLMs with medical knowledge rather than shallow feature pat-
terns, and (2) bias-aware contrastive learning, mitigating data-specific
priors through discriminative representation refinement. CCL achieves
SOTA performance on three popular VQA benchmarks and notably im-
proves answer consistency by 50% on the challenging RoMed test set,
demonstrating significantly enhanced robustness. Code will be released.

Keywords: Medical visual question answering · Medical vision-language
models · Robustness and trustworthiness.

1 Introduction

Recent advancements in Medical Vision-Language Models (Med-VLMs), such as
Med-Flamingo [23], Med-PaLM M [26], and LLaVA-Med [16], have demonstrated
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Fig. 1. A simple perturbation experiment demonstrates that current Med-VLMs ex-
hibit inconsistencies in VQA tasks, raising concerns about the robustness of Med-VQA.

remarkable progress in Medical Visual Question Answering (Med-VQA) [13, 12,
11, 10, 21]. Through supervised fine-tuning (SFT) on Med-VQA training sets,
these models achieve strong performance on downstream tasks. However, as
illustrated in Fig. 1, our preliminary tests reveal a critical limitation: When
questions are perturbed with varying levels of modifications while preserving
semantic equivalence, models often produce inconsistent answers. This inconsis-
tency severely restricts their applicability in real-world clinical settings, where
diverse and interactive query formulations are common. Moreover, it raises fun-
damental concerns about current Med-VQA evaluation framework: Is the model
truly knowing the answers, or is it merely memorizing response patterns and
guessing correctly by chance?

To investigate further, we augmented the diversity of the original training
data by introducing word-level perturbations. As shown in Fig. 1, vanilla SFT
with more varied training data provides only marginal improvements in robust-
ness against perturbations, with performance still significantly deviating from
the original evaluation results. This yields two key insights: (1) the lack of diver-
sity in training data contributes to the inconsistency issue [25], and increasing
diversity can mildly mitigate it [24]; and (2) the current SFT paradigm, with its
single autoregressive objective, has inherent limitations, as increasing data diver-
sity alone provides minimal robustness gains. These findings highlight the need
for a more robust Med-VQA evaluation framework and training methodology.

To address these challenges, we first construct the RoMed dataset as shown
in Fig. 2, a new Med-VQA dataset encompassing training and testing sets across
four major medical modalities: CT, MRI, X-Ray, and Pathology. For the training
set, we enhance diversity by introducing multi-level perturbations at the word,
sentence, and semantic levels, enriching the original Med-VQA training data.
For the test set, we reconstruct a more comprehensive VQA benchmark based
on mainstream Med-VQA datasets. Unlike traditional datasets [32, 30] that fo-
cus solely on accuracy, we incorporate evaluation metrics such as the Coefficient
of Variation (CV) and Mean Absolute Deviation (MAD) to assess answer con-
sistency, providing a more robust evaluation framework.

Furthermore, we propose Joint Consistency and Contrastive Learning (CCL)
to address the limitations of the current SFT paradigm. Through consistency
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Fig. 2. Overview of RoMed. RoMed is a comprehensive VQA dataset spanning diverse
organs and modalities (CT, MRI, X-Ray, Pathology), with dual evaluations for accu-
racy and robustness ensuring a holistic assessment.

Fig. 3. Overview of our CCL pipeline. Our framework consists of two key compo-
nents: (a) constructing the RoMed dataset through medical multi-agent collaboration;
(b) joint knowledge-anchored consistency learning for medical expertise alignment and
bias-aware contrastive learning to reduce inherent representation biases.

learning [6], CCL provides explicit supervision signals to ensure the model de-
livers correct answers across various perturbations, fostering better alignment
with medical knowledge rather than shallow, overfitting features. Additionally,
by treating perturbed questions as positive samples and using other questions
in the same batch as negative samples, CCL guides the model to perform com-
parative understanding by leveraging contrastive learning objective [14]. This
dual-objective approach mitigates potential overfitting in the model’s repre-
sentations and significantly enhances its generalization capabilities, making it
more robust and reliable for real-world clinical applications. Extensive experi-
ments and analyses demonstrate that CCL not only significantly enhances Med-
VQA performance but also markedly reduces MAD and CV, thereby improving
model robustness. CCL achieves state-of-the-art (SoTA) accuracy and robust-
ness on widely-used benchmarks, including Rad-VQA [15], SLAKE [18], and
PathVQA [8].
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2 Methods

In this section, we first describe the construction of the RoMed dataset, address-
ing the lack of robustness evaluation in current Med-VQA systems. To tackle
the limited generalization of vanilla SFT, we introduce our Joint Consistency
and Contrastive Learning (CCL) framework, which optimizes Med-VLM repre-
sentation learning by integrating consistency and contrastive objectives.

2.1 RoMed Datasets Construction

Our study reveals that current Med-VQA systems often fail to answer seman-
tically equivalent perturbed questions correctly (see Fig. 1), despite accurately
answering the original questions. This suggests that the reported accuracy on
existing Med-VQA benchmarks may not reliably reflect the true knowledge
level of Med-VLMs. To address this limitation, we construct a more diverse
and robust evaluation dataset for Med-VQA (see Fig. 3 a). First, we inte-
grate widely used Med-VQA datasets, including Rad-VQA [15], SLAKE [18],
and PathVQA [8], which cover various organs and modalities. Building on these
datasets, we introduce perturbations at three levels: word-level, sentence-level,
and semantic-level, using a medical multi-agent collaboration system. Specifi-
cally, we leverage three models to generate high-quality perturbations, combining
both general-purpose and domain-specific VLMs. For the medical multimodal
agent, we employ HuatuoGPT-Vision-34B [5], a leading medical VLM, which
provides domain-specific medical knowledge by generating captions for the given
medical images. For the medical reasoning agent, we use HuatuoGPT-o1 [4], a
single-modal LLM with advanced reasoning capabilities. This agent takes the
captions and question-answer pairs as input to produce intermediate reasoning
steps for sampling correct reasoning processes. Finally, we utilize GPT-4o as the
general meta-agent, a state-of-the-art closed-source model, to integrate feedback
from both the medical multimodal and reasoning agents, generating three lev-
els of perturbed questions along with their corresponding answers. After this
process, we validate the constructed questions by feeding them back to GPT-
4o, ensuring they align with the same medical knowledge as the original ques-
tions and do not require additional knowledge beyond what is needed to answer
the original questions correctly. Following this validation step, we construct the
RoMed dataset, as shown in Fig. 2. Since perturbed questions are derived from
the original ones, an ideal robust VLM should consistently answer all variants
correctly within each question cluster. To quantify consistency, we introduce two
metrics: Mean Absolute Deviation (MAD), defined as MAD = 1

N

∑N
i=1 |xi − µ|,

and Coefficient of Variation (CV), defined as CV = σ
µ × 100%, where N is the

number of questions in a cluster, xi is the model’s answer to the i-th question,
µ is the mean of the answers, and σ is the standard deviation.

2.2 Joint Consistency and Contrastive Learning

Knowledge-Anchored Consistency Learning Let q denote the original
question, tokenized into text tokens Tq. The corresponding image I is encoded
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into visual tokens VI using a visual encoder (e.g., CLIP-ViT). The multimodal
input X is formed by concatenating Tq and VI , i.e., X = [Tq;VI ]. The input
X is fed into the LLM backbone, generating outputs Y. The autoregressive loss
Loriginal is computed as: Loriginal = −

∑T
t=1 logP (yt | y<t,X ), where T is the out-

put sequence length and yt is the token at position t. To enhance the alignment
with medical knowledge, we perform consistency learning by introducing per-
turbations at three levels: word-level, sentence-level, and semantic-level. These
perturbations are constructed through multi-agent collaboration based on the
original question. For each perturbed question qi (i ∈ {w, s, sem}), the perturbed
input Xi = [Tqi ;VI ] is used to compute the total consistency loss:

Lconsistency = Loriginal +
∑

i∈{w,s,sem}

(
−

T∑
t=1

logP (yt | y<t,Xi)

)
.

Bias-Aware Contrastive Learning To eliminate bias in the training data
and calibrate the model’s representation, we employ contrastive learning as
part of the CCL framework. Specifically, the original question q and its per-
turbed versions at three levels (qw, qs, and qsem) are treated as positive sam-
ples, while other questions in the same batch serve as negative samples. The
hidden state embedding H for the original input is obtained by feeding the mul-
timodal input X = [Tq;VI ] into the LLM backbone and applying mean pooling:
H = M(LLM(X )), where M(·) denotes the mean pooling operation. Similarly,
for each perturbed question qp (with p ∈ {w, s, sem}), the corresponding hidden
state embedding is H+

p = M(LLM([Tqp ;VI ])). The embeddings of unrelated
questions in the batch are denoted as H−

j . The contrastive loss Lctr is:

Lctr = −
∑

p∈{w,s,sem}

log
exp(sim(H,H+

p )/τ)

exp(sim(H,H+
p )/τ) +

∑N
j=1 exp(sim(H,H−

j )/τ)
,

where H−
j represent the embedding of the j-th negative sample, sim(·, ·) denote

the cosine similarity, τ > 0 be a temperature hyperparameter, and N is the total
number of negative samples. The overall loss is defined as L =

Lctr+Lconsistency
2 .

3 Experiments

Evaluation Datasets and Metrics. To validate the effectiveness of our pro-
posed CCL in enhancing traditional VQA performance, we conducted experi-
ments on mainstream Med-VQA datasets, including Rad-VQA [15], SLAKE [18],
and PathVQA [8]. These datasets cover CT, MRI, Chest-Xray, and Pathology
modalities, encompassing both open-ended (free-form answers) and closed-ended
(yes/no) question settings. For open-ended questions, we used Recall as the eval-
uation metric, while Accuracy was employed for closed-ended questions, consis-
tent with prior research. Additionally, to assess the robustness of current Med-
VLMs, we utilized our constructed RoMed dataset. Beyond Recall and Accuracy,
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Method RAD-VQA SLAKE PathVQA
Open Closed Open Closed Open Closed

Representative & SoTA methods reported in the literature (Non-VLMs Based Methods)
VL Encoder–Decoder [2] - 82.5 - - - 85.6
Q2ATransformer [22] - 81.2 - - 54.9 88.9
Prefix T. Medical LM [27] - - - 82.0 - 87.0
PubMedCLIP [7] - 80.0 - 82.5 - -
BiomedCLIP [31] - 79.8 - 89.7 - -
M2I2 [17] - 83.5 - 91.10 - 88.0
BiomedGPT-S [30] 13.4 57.8 66.5 73.3 10.7 84.2
BiomedGPT-M [30] 53.6 65.0 78.3 86.8 12.5 85.7
CLIP-ViT w/ GPT2-XL - - 84.3 82.1 40.0 87.0
VLMs-based results
GPT-4o [9] 51.6 64.0 59.1 71.6 24.1 76.0
LLaVA-v1.5 [19] 23.6 50.7 35.2 52.2 11.9 52.8
Med-Flamingo [23] 10.3 52.2 8.5 37.0 1.2 45.6
PMC-VQA [32] 6.3 41.5 7.3 33.9 1.0 40.1
SQ-LLaVA [29] 23.9 52.6 40.0 57.5 12.2 53.8
ST-LLaVA [28] 33.8 59.2 40.1 55.5 10.4 52.1
LLaVA-Med (StableLM) 51.6 75.4 82.2 82.7 33.2 89.5
LLaVA-Med (StableLM) + CCL 62.7 84.9 83.6 85.1 36.3 90.1
LLaVA-Med (Phi2) 54.5 79.8 82.1 86.5 34.0 90.4
LLaVA-Med (Phi2) + CCL 65.0 88.2 83.8 88.5 37.5 90.7

Table 1. Performance on traditional Med-VQA tasks. Bold denotes the best
performance,underlined denotes the second-best.

Method RoMed(RAD-VQA) RoMed(SLAKE) RoMed(PathVQA)
Recall Acc CV(↓) MAD(↓) Recall Acc CV(↓) MAD(↓) Recall Acc CV(↓) MAD(↓)

LLaVA-Med (StableLM) 26.5 61.9 83.9 52.1 52.1 72.1 65.3 51.5 22.3 68.4 96.0 58.6
LLaVA-Med (StableLM) + CCL 48.1 79.8 68.3 42.5 70.9 81.3 57.6 37.3 30.8 81.3 67.7 42.4
LLaVA-Med (Phi2) 35.6 63.9 77.8 55.8 60.1 71.9 60.4 49.0 19.2 64.13 93.0 58.4
LLaVA-Med (Phi2) + CCL 54.1 81.4 63.3 40.4 70.4 82.7 54.9 35.6 32.7 82.8 66.6 41.9

Table 2. Performance on RoMed VQA. Bold denotes the best performance, underlined
denotes the second-best. Note that lower values are better for CV and MAD.

we introduced MAD and CV coefficients to evaluate the consistency of reasoning,
reflecting the robustness of Med-VLMs.

Implementation Details. For fair comparison, our hyperparameters align with
LLaVA-Med [16]. We adopt pretrained CLIP-ViT-Large-Patch14 as the vision
encoder and StableLM [3] and Phi2 [1] as LLM backbones. A 2-layer MLP is
used as the projector, with training runs for 9 epochs with a learning rate of
2e-5 without weight decay and a batch size of 2, using 8 × RTX 3090 GPUs.

Baselines. We compare our method with several strong baselines: (1) CLIP-
based methods (e.g., PubMedCLIP [7]), which achieve SOTA performance but are
limited by their reliance on candidate words for open-ended questions; (2) Medi-
cal foundation models (e.g., BiomedGPT [30]), which leverage generative multi-
modal pretraining but lack multi-turn dialogue capabilities due to their non-LLM
architecture; (3) VLM-based models (e.g., LLaVA-Med, LLaVA-v1.5 [16, 20]),
which excel in VQA accuracy and interactive dialogue but prioritize precision
over robustness. In contrast, our CCL method offers a plug-and-play enhance-
ment for medical models, seamlessly integrating with VLM-based approaches to
provide multi-turn dialogue support, improved accuracy, and enhanced robust-
ness, making it ideal for real-world clinical applications.
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A B
RoMed-radvqa RoMed-Slake RoMed-Pvqa
Recall Acc Recall Acc Recall Acc

x x 35.6 63.9 60.1 71.9 19.2 64.1
x ✓ 44.5 74.6 65.1 74.6 24.6 70.0
✓ x 40.7 65.0 62.3 73.5 20.3 64.9
✓ ✓ 54.1 81.4 70.4 82.7 32.7 82.8
Table 3. Ablation on joint learning. A
denotes the consistency learning, and B
denotes the contrastive learning.

Model
RoMed-radvqa RoMed-Slake RoMed-Pvqa
Recall Acc Recall Acc Recall Acc

Baseline 35.6 63.9 60.1 71.9 19.2 64.1
CCL 54.1 81.4 70.4 82.7 32.7 82.8

CCL++ 55.2 82.1 71.6 83.1 32.4 83.3
Table 4. Model performance compar-
ison under data scaling using LLaVA-
Med (Phi2). The variant CCL++ indi-
cates training with doubled dataset size.

Traditional VQA Performance Comparison. As shown in Tab. 1, our CCL
method, when integrated with the top-performing LLaVA-Med [16], achieves
SOTA performance across three benchmarks. Notably, it excels in challenging
open-ended questions, demonstrating its effectiveness as a plug-and-play module
for robust VQA in clinical settings.
VQA Robustness Performance Comparison. We evaluated our approach
on the RoMed VQA benchmark, which introduces variations to assess robustness
under diverse clinical queries. As shown in Tab. 2, LLaVA-Med’s accuracy drops
significantly (e.g., RAD-VQA [15] recall decreases by nearly 50%). In contrast,
with CCL, the model maintains high performance, reducing accuracy loss to
within 20% (Fig. 4). This highlights the limitations of current VQA frameworks
and underscores CCL’s ability to enhance both performance and robustness for
real-world applications.

3.1 Ablation and Analysis

Ablation of Joint Learning. We conducted experiments to validate the com-
plementary roles of consistency learning and contrastive learning in our method.
As shown in Tab. 3, the absence of either loss leads to a performance degrada-
tion. Contrastive learning plays a critical role in refining robust representations,
while consistency learning ensures the model acquires knowledge across varied
question formulations and establishes better alignment with medical knowledge.
The combination of both components achieves the optimal performance.
Can SFT Improve VQA Robustness? To verify that our performance im-
provements are attributable to CCL rather than additional training data, we
compared the performance of LLaVA-Med with CCL and vanilla SFT, both
trained on the RoMed trainset. As shown in Fig. 5, vanilla SFT on a larger
dataset fails to effectively enhance model robustness. This demonstrates the ef-
fectiveness of CCL, which leverages consistency learning to acquire new knowl-
edge while utilizing contrastive learning to refine representations.
Representation Visualization Comparison. As shown in Fig. 4 (e) and (f),
we observe that in vanilla LLaVA-Med, the embeddings of the three levels of
variations and the original questions are widely separated, indicating that the
representations fail to capture the shared features across different formulations.
This sensitivity to perturbations could lead to misdiagnoses in real-world clinical
applications with diverse query formulations. In contrast, with CCL, the model’s
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Fig. 4. (a)–(d) Performance degradation under varied VQA questions, significantly
mitigated by CCL; (e)–(f) Representation embeddings of multi-level VQA variations.
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Fig. 5. Comparison between SFT and CCL. SFT yields minimal performance gains.

representations under varied perturbations become more robust, suggesting that
the model learns more low-level, generalizable features across different levels of
perturbations. This makes it better suited for high-stakes clinical scenarios.
Effect of Scaling Data. To evaluate the effectiveness of our method on larger-
scale data, we expanded the original VQA questions by generating two additional
variations per level (word-level, sentence-level, and semantic-level), resulting in
a dataset twice the size of RoMed training data. This allowed us to explore the
trade-off between performance and cost. As shown in Tab. 4, adding one variation
per level significantly improves the model’s VQA performance and robustness.
However, doubling the dataset size yields only marginal gains. Considering the
training time overhead, expanding by one variation per level enables the model
to achieve strong generalization capabilities through CCL.

4 Conclusion

This work reveals the fragility of Med-VLMs in providing consistent answers
to semantically equivalent medical questions, attributing it to insufficient con-
cept alignment and training data biases. To address these challenges, we con-
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struct RoMed, a dataset with diverse perturbations, and propose Consistency
and Contrastive Learning (CCL), which enhances robustness by aligning models
with medical knowledge and reducing biases, achieving state-of-the-art perfor-
mance.
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