
Medical Contrastive Learning of Positive and
Negative Mentions

WeiLong Wu1, Jingzhi Yang4, Xun Zhu1, Xiao Zhang1, ZiYu Liu1, Miao Li1†,
and Ji Wu1,2,3†

1 Department of Electronic Engineering, Tsinghua University, Beijing 10084, China
2 College of AI, Tsinghua University, Beijing 100084, China

3 Beijing National Research Center for Information Science and Technology, Beijing
10084, China

4 School of Computer Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

{wu-wl23, zhu-x24, xzhang19, ziyu-liu22, miao-li,
wuji_ee}@mails.tsinghua.edu.cn

yangjingzhi@bupt.edu.cn

Abstract. Contrastive learning techniques have achieved significant suc-
cess and have been widely applied in both general and medical domains.
However, there is a data difference between the general domain and
the medical domain about negative mentions, which almost never ap-
pear in general domain but almost always in medical domain. We find
that most existing medical contrastive learning methods do not effec-
tively utilize or even overlook the numerous negative mentions present
in the data during training, resulting in deficient multimodal feature
alignment capabilities. To address this issue, we propose the Visual
Entailment Based Contrastive Learning (VECL) method. By introduc-
ing a ternary visual entailment contrast relationship of entailment, neu-
tral, and contradiction, our method effectively utilizes both positive and
negative mentions for modeling fine-grained sample relationships, en-
hancing the model’s multimodal feature alignment capabilities. The ex-
periment results show that we achieves SOTA performance on classifica-
tion, grounding and report generation tasks. Resources are maintained
at https://github.com/WVeLong/VECL.
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1 Introduction

Attributed to the rapid development of contrastive learning, many medical vision-
language model are proposed, such as MedCLIP [1], GLoRIA [2], CheXzero [3],
MedKLIP [4], KAD [5], CARZero [6]. However, existing methods typically do
not effectively utilize or even overlook the data difference between the general do-
main and the medical domain: data in the general domain usually contains only
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positive mentions (confirming the presence of target or disease), whereas data in
the medical domain includes both positive and negative mentions (confirming the
absence of target or disease). For example, we conduct a rough statistical anal-
ysis of the MIMIC-CXR [7] dataset, and find that samples containing negative
mentions account for approximately 49%. Because existing methods typically do
not pay attention to negative mentions, they fail to learn better multimodal rep-
resentations, which consequently limits their performance on downstream tasks.

For the zero-shot classification evaluation of visual language pre-trained Mod-
els, in general domain, images are only computed for similarities with texts that
contain positive mentions, and we refer to this as the Positive-Only Similarity
(POS) evaluation method. But in medical domain, it is necessary to compute
the similarities between images and texts that contain positive or negative men-
tions, and we refer to this as the Positive-Negative Similarity (PNC) evaluation
method, which has been proposed in CheXzero [3] but is not widely adopted
in the community. In our experiments, most previous methods show a certain
degree of drop in metrics when evaluated using the PNC evaluation method
compared to the POS evaluation method, which supports the hypothesis above.

To address this issue, we propose the Visual Entailment Based Contrastive
Learning (VECL) method. We firstly extract positive and negative mention la-
bels from radiology reports and then introduce ternary visual entailment contrast
relationships, utilizing both labels to model fine-grained sample relationships.
Meanwhile, we modify the InfoNCE loss function to train the model more effec-
tively. The experimental results show that our model learns better multimodal
feature alignment capabilities and achieves SOTA performance on various down-
stream tasks, such as classification, grounding and report generation.

2 Method

In this section, we will illustrate the details of the Visual Entailment Based
Contrastive Learning (VECL) method. Its framework is shown in Figure 1.

2.1 Extract Positive and Negative Mention Labels from Report

We can choose an LLM or other specialized label extraction tool to extract labels
from report sentences. During label extraction, we need to choose p categories of
diseases to form the set of label categories C, along with the label 0 representing
“other diseases / without abnormalities”. Although “other diseases” and “without
abnormalities” have different meanings, they serve the same effect in subsequent
processing, so they are both represented by the label 0.

C = {0, 1+, 1−, 2+, 2−, . . . , p+, p−} (1)

Assuming that the sentence i is related to the disease category r, 1 ≤ r ≤ p,
the extracted label is denoted as Ci, Ci ∈ C. If the sentence i contains positive
/ negative mention of the disease category r, then Ci = r+/r−; If the sentence
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Fig. 1. The framework of VECL method. The image enters the image encoder directly,
while the report is first segmented into sentences and extracted labels, and then one
of the sentences sampled from the report enters the text encoder. After encoding,
the image and text features are fused to obtain cross-modal similarity SI2T and ST2I

in both way. Meanwhile, we introduce visual entailment and utilize the positive and
negative mentions in the labels to finely model the sample relationships, obtaining the
training labels M . Finally, SI2T , ST2I and M are used to compute loss.

contains other diseases or without abnormalities, then Ci = 0. If a report sen-
tence contains multiple diseases, a list of labels will be generated. Since one
image corresponds to a complete report, the set of labels for all sentences in a
report is regarded as the image label set.

2.2 Encode and Fuse Feature

Assuming that xi represents the i-th image in training set and yj represents the
j-th report in training set, ΦI , ΦT and ΦF represent the image encoder, the text
encoder and the fusion module, respectively. So the intermediate results and the
image-text similarities are as follows:

xI
i = ΦI(xi), y

T
j = ΦT (yj) (2)

SI2T
ij = ΦF (x

I
i , y

T
j ) = MLP (CrossAtten(xI
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T
j , y

T
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ST2I
ji = ΦF (y

T
j , x

I
i ) = MLP (CrossAtten(yTj , x

I
i , x

I
i )) (4)

xI
i and yTj represent the image features and the text features, respectively,

while SI2T
ij and ST2I

ji represent the image-text similarities in both way, with each
serving as the query in the cross attention process, respectively. For any image
xi and any report yj within a batch, the image-text similarities among them
ultimately form two similarity matrices SI2T and ST2I , where SI2T , ST2I ∈
RN×N×3. Here N is the batch size.

2.3 Modeling Fine-grained Contrast Relationships

As shown in Figure 2, to finely model the contrast relationships among samples
using positive and negative mentions labels from report, we introduce ternary
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Fig. 2. Comparison of contrast relationship modeling. (a) Traditional binary contrast
relationships for the InfoNCE [8] loss, which include positive and negative samples
represented by number 1 and 0. (b) Visual entailment contrast relationships, which
include entailment, neutral and contradiction, are represented by three basis vectors.

visual entailment contrast relationships: entailment, neutral and contradiction,
which are represented by three basis vectors:[1, 0, 0], [0, 1, 0], and [0, 0, 1], respec-
tively. Specifically, we assess the relationship between the image label set and
the sentence label within a batch:

– If the image label set and sentence label contain the same disease category
r and are the same / opposite symbol, we consider the visual entailment
contrast relationship to be entailment / contradiction.

– If the image label set and sentence label contains different disease category
r, we consider the visual entailment contrast relationship to be neutral.

– Specifically, when the sentence label is 0, we consider the relationship is
entailment with itself and neutral with others.

After obtaining the visual entailment contrast relationships within a batch,
we get a group vectors whose number is N ×N , then we concatenate them and
finally obtain the training label M , where M ∈ RN×N×3.

2.4 Compute Loss

The entire loss function consists of two parts: the original InfoNCE [8] loss and
the proposed 3D-InfoNCE loss. For the InfoNCE loss, it’s label M0 remains with
the diagonal being 1 and the off-diagonal being 0.

The complete predictions and labels of the entire loss function are SI2T ,
ST2I , and M , M0. Let d represent the position along the third dimension of
SI2T , ST2I and M , d ∈ {0, 1, 2}. The InfoNCE loss computes the loss between
SI2T (d = 0), ST2I(d = 0) and M0:
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LInfo = InfoNCE(SI2T (d = 0),M0) + InfoNCE(ST2I(d = 0),M0) (5)

And the 3D-InfoNCE loss computes the loss between SI2T , ST2I and M :

LI2T (d) = − 1

N

N∑
i=1

N∑
j=1

Norm(Mij(d)) · log(Softmax(eS
I2T
ij (d))) (6)

L3DInfo =

2∑
d=0

(LI2T (d) + LT2I(d)) (7)

The total loss is the sum of both:

L = LInfo + L3DInfo (8)

Here, Norm refers to the normalization:

Norm(Mij(d)) =

{
Mij(d)∑N
i=1 Mij(d)

if
∑N

i=1 Mij(d) ̸= 0,

0 if
∑N

i=1 Mij(d) = 0
(9)

3 Experiment and Result

3.1 Dataset, Evaluation Metric and Implementation Details

For training, we only use MIMIC-CXR [7]. For downstream task evaluation,
we use Open-I [9], CheXpert [10], ChestXray14 [11], ChestXDet10 [12], Pad-
Chest [13] for zero-shot classification, ChestXray14 for fine-tuning classification,
ChestXDet10 for zero-shot grounding, and MIMIC-CXR for retrieval based re-
port generation.

For classification task, we adopt AUC, F1, MCC, and mAP. For grounding
task, we adopt Pointing Game [14]. For generation task, we adopt NLG metrics:
ROUGE [15], BLUE [16], CIDEr [17] and CE metrics: Precision, Recall and F1.

We use Meta-Llama-3-8B-Instruct [18] for label extraction, and the num-
ber of diseases categories p is 24, which exactly covers all the categories in
MIMIC-CXR, Open-I, CheXpert, ChestXray14, and ChestXDet10, but does not
including any categories in PadChest. we choose ViT-B/16 [19] as the image en-
coder which utilizes M3AE [20] for pretraining on the MIMIC-CXR, and choose
BioBERT [21] as the text encoder which is fine-tuned on MIMIC-CXR and Pad-
Chset. The Adam [22] optimizer is utilized with a learning rate of 5e-5, and the
batch size is 256. All experiments are conducted with an 80G A800 GPU.
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3.2 Comparison with Different Methods

Zero-Shot Classification As shown in Table 1, in both the POS and PNC
evaluation methods, our model achieves SOTA across all metrics on all datasets,
even in PadChest, where the labels is not covered in the set of label categories C.
It is worth noting that CARZero [6] who did not care about negative mentions
during training, has a significant drop in the PNC. And models such as MedCLIP
[1] and MedKLIP [4], although they indirectly consider negative mentions in
different ways during training, still have different degrees of drop in the PNC,
due to failing to effectively model the complex contrast relationships among
images-sentence pairs.

Method Eval
Method

Open-I CheXpert ChestXray14 ChestXDet10 PadChest

AUC↑ F1↑ AUC↑ F1↑ AUC↑ F1↑ AUC↑ F1↑ AUC↑ F1↑

MedCLIP
POS 0.500 0.134 0.528 0.389 0.510 0.146 0.517 0.322 0.477 0.033
PNC 0.756 0.184 0.819 0.531 0.704 0.180 0.647 0.347 0.700 0.051

GLoRIA
POS 0.588 0.086 0.585 0.331 0.620 0.131 0.602 0.308 0.563 0.027
PNC 0.524 0.074 0.540 0.307 0.539 0.115 0.560 0.297 0.532 0.022

MedKLIP
POS 0.565 0.111 0.717 0.416 0.623 0.135 0.571 0.297 0.612 0.032
PNC 0.470 0.074 0.496 0.349 0.498 0.105 0.529 0.303 0.500 0.024

KAD
POS 0.818 0.283 0.849 0.549 0.796 0.289 0.749 0.449 0.748 0.087
PNC 0.695 0.169 0.786 0.514 0.695 0.168 0.675 0.383 0.568 0.043

CARZero
POS 0.839 0.242 0.909 0.370 0.803 0.242 0.795 0.308 0.804 0.114
PNC 0.352 0.109 0.144 0.244 0.347 0.133 0.422 0.333 0.419 0.040

VECL(Ours) POS 0.839 0.341 0.915 0.664 0.816 0.309 0.811 0.498 0.822 0.147
PNC 0.813 0.333 0.922 0.689 0.792 0.291 0.780 0.470 0.775 0.116

Table 1. Comparison of different methods on Open-I, CheXpert, ChestXray14,
ChestXDet10, PadChest for zero-shot classification.

Fine-Tuning Classification As shown in Table 2, on 1%, 5%, 10% ChestXray14
fine-tuning data, our model continues to achieve SOTA on all metrics.

[Fine-Tuning Classification]

Method 1% 5% 10%

AUC↑ F1↑ MCC↑ mAP↑ AUC↑ F1↑ MCC↑ mAP↑ AUC↑ F1↑ MCC↑ mAP↑

KAD 0.750 0.117 0.208 0.163 0.712 0.096 0.169 0.129 0.666 0.096 0.121 0.096

CARZero 0.813 0.153 0.263 0.215 0.835 0.189 0.303 0.264 0.839 0.196 0.314 0.277

VECL (Ours) 0.826 0.338 0.310 0.264 0.842 0.352 0.324 0.286 0.845 0.361 0.334 0.295

[Zero-Shot Grounding and Retrieval Based Report Generation]

Method

ChestXDet10 MIMIC-CXR

Point Game↑ RG-L↑ BL-1↑ BL-2↑ CIDEr↑ Pr↑ Re↑ F1↑

KAD 0.391 0.115 0.189 0.087 0.019 0.504 0.137 0.197

CARZero 0.543 0.128 0.223 0.105 0.028 0.496 0.160 0.218

VECL (Ours) 0.683 0.128 0.223 0.105 0.029 0.574 0.204 0.273

Table 2. Combined Tables: Comparison of different methods on 1%, 5%, 10%
ChestXray14 data for fine-tuning classification, on ChestXDet10 for zero-shot ground-
ing, and on MIMIC-CXR for retrieval based report generation.
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Zero-Shot Grounding As shown in Table 2, on ChestXDet10, our model
not only achieved SOTA but also showed a very significant improvement over
the baseline.

Retrieval Based Report Generation As shown in Table 2, on MIMIC-
CXR, our model achieves SOTA on all metrics.

In the three downstream tasks in the Table 2, the outstanding performance
of our method still demonstrates its ability to effectively align the multimodal
representations, even without using the PNC evaluation method. By considering
both positive and negative mentions during training, our model is capable of
accurately matching the normal/lesion areas in the images with the prompt.

[Ablation Study of Visual Entailment and Loss Function]

Visual Entail Loss Function Eval
Method

CheXpert PadChest

False True BCE CE InfoNCE Ours AUC↑ F1↑ MCC↑ mAP↑ AUC↑ F1↑ MCC↑ mAP↑

✓ × × ✓ × POS 0.899 0.331 0.574 0.639 0.798 0.078 0.126 0.067
PNC 0.463 0.219 0.208 0.255 0.445 0.028 0.050 0.018

✓ ✓ × POS 0.896 0.638 0.568 0.639 0.739 0.072 0.089 0.065
PNC 0.906 0.652 0.586 0.660 0.745 0.067 0.086 0.037

✓ ✓ × POS 0.882 0.614 0.544 0.614 0.739 0.070 0.088 0.040
PNC 0.893 0.623 0.552 0.639 0.749 0.069 0.088 0.038

✓ × ✓
POS 0.915 0.664 0.615 0.677 0.822 0.147 0.165 0.097
PNC 0.922 0.689 0.631 0.690 0.775 0.116 0.129 0.074

[Analysis of the Model’s Robustness to Extracted Labels]

Method Eval
Method

Open-I CheXpert ChestXray14 ChestXDet10 PadChest

AUC↑ F1↑ AUC↑ F1↑ AUC↑ F1↑ AUC↑ F1↑ AUC↑ F1↑

VECL(labeler)
POS 0.838 0.336 0.915 0.665 0.811 0.305 0.798 0.485 0.813 0.150
PNC 0.833 0.307 0.919 0.687 0.811 0.288 0.763 0.453 0.777 0.082

VECL(LLM) POS 0.839 0.341 0.915 0.664 0.816 0.309 0.811 0.498 0.822 0.147
PNC 0.813 0.333 0.922 0.689 0.792 0.291 0.780 0.470 0.775 0.116

Table 3. Combined Tables: Ablation study of visual entailment and loss function, and
comparison on zero-shot classification of VECL models trained from labels extracted
by Chexpert-Labeler and LLM. Visual entailment being set to False indicates that only
the first dimension of training label M is used, while being set to True indicates that
the entire label M is used. Note that × indicates combinations that cannot be achieved
due to dimension mismatches.

3.3 Ablation Study

Ablation Study of Visual Entailment As shown in Table 3, we compare
with baseline model for the zero-shot classification performance on CheXpert
and PadChest. In baseline, we only use the first dimension of the training label
M for optimization. The baseline showed varying degrees of drop in both POS
and PNC, with a particularly significant drop in PNC. In fact, the baseline model
can still model the entailment and neutral from positive and negative samples,
but it fails to model the contradictory from negative mentions, which indicates
that modeling the contradictory of negative mentions is quite important and
visual entailment method is proved to be an effective way to model them.
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Ablation Study of Loss Function As shown in Table 3, we compare with
different baseline models on the same tasks. In baseline, there use Binary Cross-
Entropy Loss (BCE) loss and Cross-Entropy (CE) loss. Compared with them,
our model has better performance, which indicates that our loss function is more
suitable for optimizing features that contain complex visual entailment contrast
relationships.

Analysis of the Model’s Robustness to Extracted Labels We use la-
bel extraction tool Chexpert-Labeler [10] to extract new labels, which contain
13 types of disease categories and “No Finding” as 14th category, and retrained
the model. Meanwhile, we use new labels as the reference to evaluate the accu-
racy of the labels extracted by LLM. The average precision, recall, and F1 score
across these 14 categories are 0.552, 0.608, and 0.585, respectively. As shown in
Table 3, although there is some noise in the labels of LLMs, the VECL models
trained on both types of labels show comparable performance, both outperform-
ing other baseline models and achieving SOTA. This indicates that our method
has robustness to resist label noise and can effectively learn meaningful visual
entailment contrast relationships among them.

Fig. 3. t-SNE visualization on the similarities of different image-sentence pairs between
CARZero and VECL. Visualization results demonstrate that our method can learn
better multimodal aligned representations. Here, “positive” indicates the presence of
the specific disease, while “negative” indicates the absence of the specific disease.

3.4 Visualization

We perform t-SNE [23] visualization on the similarities of different image-sentence
pairs, selecting CARZero as comparison. As shown in Figure 3, in each specific
disease category, our method can clearly distinguish the distributions of oppo-
site features, while CARZero is much poorer. In the feature space, our model
can bring positive images closer to positive sentences and farther from negative
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sentences, while simultaneously bringing negative images closer to negative sen-
tences and farther from positive sentences, which directly demonstrates that our
method has learned better multimodal aligned representations.

4 Conclusion

In this paper, we find that existing methods typically overlook the data differ-
ence between the general domain and the medical domain and do not effectively
utilize the negative mentions, consequently limits multimodal feature alignment
capability and downstream tasks performance. To address this issue, we propose
the Visual Entailment Based Contrastive Learning (VECL) method. The ex-
periment results show that our model has better multimodal feature alignment
capability and achieves SOTA performance on classification, grounding and re-
port generation tasks.

Additionally, since the label extraction process relies only on reports, our
method exhibits high generality and transferability. In the future, we will validate
our method across various types of medical data, such as CT, MRI, and so on.
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