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Abstract. Federated Learning (FL) is a distributed machine learning
paradigm enabling collaborative model training across decentralized clients
while preserving data privacy. In this paper, we revisit the stability of the
vanilla FedAvg method under diverse conditions. Despite its conceptual
simplicity, Fed Avg exhibits remarkably stable performance compared to
more advanced FL techniques. Our experiments assess the performance
of various FL. methods on blood cell and skin lesion classification tasks
using Vision Transformer (ViT). Additionally, we evaluate the impact of
different representative classification models and analyze sensitivity to
hyperparameter variations. The results consistently demonstrate that,
regardless of dataset, classification model employed, or hyperparameter
settings, FedAvg maintains robust performance. Given its stability, ro-
bust performance without the need for extensive hyperparameter tuning,
FedAvg is a safe and efficient choice for FL deployments in resource-
constrained hospitals handling medical data. These findings highlight
the value of the vanilla FedAvg as a reliable baseline for clinical practice.
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1 Introduction

Deep learning [9,24] has demonstrated remarkable success across various do-
mains by leveraging large-scale datasets for training neural networks. While
traditional deep learning approaches assume centralized data availability, many
real-world scenarios, particularly in healthcare, face privacy constraints that pre-
vent direct data sharing [1,10,20]. The growing concerns about data privacy
and security have led to the emergence of federated learning (FL) [19], which
enables collaborative model training while keeping sensitive data localized [4,
14, 23]. In particular, the deployment of FL in medical institutions has enabled
collaborative learning across multiple hospitals without compromising patient
confidentiality [11,12,21]. However, the effectiveness of FL heavily depends on
the choice of the key hyperparameters across diverse scenarios.
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Table 1. Comparison of optimization techniques used in different FL. methods. X indi-
cates the use of vanilla optimization (local SGD for ClientOpt or mean aggregation for
ServerOpt), while v indicates the adoption of advanced optimization techniques.

Optimization FedAvg FedProx FedDyn FedCM FedSAM FedGAMMA FedSpeed FedSMOO

ClientOpt X v v v v v v v
ServerOpt X X v v X v X v

Recent FL techniques have developed various approaches to address client
drift challenges caused by data heterogeneity across distributed clients [13,17,
31]. FedProx [16] and FedDyn [2] tackle client drift through different regular-
ization approaches - FedProx adds a proximal term to constrain local training,
while FedDyn introduces dynamic correction terms to align local and global
objectives. FedCM [30] takes a different approach by incorporating momentum
in client training process to improve convergence stability. Another line of re-
search focuses on sharpness-aware optimization [8], starting with FedSAM [22]
which applies local perturbations to find flatter minima. Building upon this,
FedGAMMA [5] extends the concept to global optimization, FedSpeed [26] com-
bines it with proximal regularization for longer training intervals, and FedSMOO
[25] integrates dynamic regularization with sharpness-awareness. As shown in
Table 1, these methods introduce additional optimization mechanisms either at
client-side, server-side, or both, all requiring careful hyperparameter tuning.

In this paper, we demonstrate that such complexity may not be necessary,
as the simple averaging mechanism of FedAvg achieves comparable or better
performance. Moreover, FedAvg remains a standard benchmark for recent FL
studies, validating its enduring relevance despite newer sophisticated methods.
Indeed, the straightforward nature of FedAvg makes it less susceptible to imple-
mentation errors and easier to debug compared to more complex alternatives.
Furthermore, we numerically show that vanilla FedAvg’s simple averaging mech-
anism effectively captures the essential aspects of distributed learning across var-
ious scenarios. The consistent performance of Fed Avg raises important questions
about the practical value of more complex FL variants. The main contributions
of this paper are as follows:

— We validate that FedAvg achieves comparable convergence speed to recent
FL methods across communication rounds.

— We evaluate the top-1 test accuracy of FL. methods across various classifica-
tion models, revealing FedAvg’s consistent performance regardless of model
architecture.

— We investigate the sensitivity of FL methods to hyperparameter variations,
showing that Fed Avg maintains stable performance without requiring exten-
sive tuning.

— We show that advanced FL methods can potentially surpass FedAvg, but
finding their optimal hyperparameters is challenging.
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Fig. 1. Overview of the general FL framework. The process consists of three main steps
- (1) broadcast of global model from central server to all clients, (2) local training
at randomly selected clients using their private data, and (3) aggregation of locally
trained models at the central server to improve the global model.

2 Problem and Method

2.1 Federated Setting

We consider a federated network consisting of central server and N clients. Each
client n = 1,..., N holds different local dataset D™ with potentially varying
number of data points. The goal of FL is to train a globally shared model § € ©
by leveraging the clients’ datasets {D"})_, without direct data sharing. Math-
ematically, the training objective can be formulated as minimizing

FO)2 =3 Fa(0), (1)

where F'(0) is the global objective function and F),(6) denotes the local objective
function for the nth client defined as
1

1D
reD™

with f,,(0;z) being the loss function for data sample .

2.2 General FL Framework

In FL, the central server communicates with the clients over R communication
rounds to minimize the objective function F(#), as illustrated in Fig. 1. The
standard FL framework consists of the following steps:
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Algorithm 1: General FL. Framework.

1: Server Execution:

2: forr=0,...,R—1do

3: Broadcast:

4 Transmit global model 6, to all clients

5: Randomly sample M clients, S,

6 Update:

7 For each client m € S, in parallel:

8 071" ClientOpt(0,, D™, L™, B ciient)
9 Aggregate:

10: 041 < ServerOpt ({QT}megr, @Semer)
11: end

Broadcast At each communication round 7, the central server broadcasts its
aggregated model 6, to all clients. Note that the global model is randomly ini-
tialized at the very first round (r = 0). Then the central server randomly samples
a subset of M < N clients from the total NV clients, denoted as S,., to participate
in the update process. Only the selected clients participate in the model training
while the remaining clients remain idle until the next round.

Update After receiving 6, from the central server, each client n initializes its
local model as 67 « 6,, where 67 is the local model of the n'* client. Then
each randomly selected client m € S, trains its local model with D™ up to the
maximum number of local epochs L™ as follows:

0L ClientOpt(0,, D™, L™, B etient)- (3)

The local training process varies depending on the FL method - vanilla FedAvg
performs standard local SGD, while advanced methods incorporate additional
optimization techniques with client-side hyperparameters @ j;en:-

Aggregate After receiving the set of models {0"},,cs,, the central server ag-
gregates these locally trained models using ServerOpt as:

Or41  ServerOpt({0" }mes,., Pserver ), (4)

where ServerOpt(-) can be any existing optimization-based FL method at the
server-side. Note that this formulation supports not only simple averaging, but
also advanced optimization techniques that incorporate the server-side hyper-
parameters @ e to refine the aggregated model. The improved global model
0-+1 is then used for the next round r + 1, and this process repeats until r
reaches the predefined number of rounds R for convergence. Overall procedure
is described in Algorithm 1.
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Fig. 2. Test accuracy vs. communication rounds for blood cell and skin lesion classifica-
tion tasks. FedAvg shows comparable convergence speed and performance to state-of-
the-art FL. methods. Zoom-in plots highlight the comparable and stable performance
of vanilla FL. during final rounds.

3 Experiment and Results

3.1 Experiment Setting

To validate the stability of FedAvg, we evaluate the performance of state-of-the-
art FL methods on two medical image classification tasks: blood cell [3] and skin
lesion [29] classification task. For all experiments except the model comparison
experiment, clients employ Vision Transformer (ViT) [7] as local model to ensure
consistent evaluation of the FL methods. Moreover, we adopt label skew [15] to
introduce data heterogeneity by distributing the non-IID data over N = 100
clients following a Dirichlet distribution (v = 1.0). Additionally, M = 10 clients
are randomly selected at each communication round to participate in the training
process. All experiments are conducted on Intel Gaudi 2 Al accelerators.

3.2 Results

Impact of Stability To evaluate the stability of different FL methods, we ana-
lyze the test accuracy with respect to communication rounds on both blood cell
and skin lesion classification tasks as shown in Fig. 2. The results demonstrate
that FedAvg achieves comparable or even faster convergence compared to more
sophisticated FL. methods such as FedProx, FedCM, FedDyn, and FedSpeed.
Specifically, FedAvg exhibits stable convergence patterns, reaching competitive
test accuracies within 100 communication rounds for both datasets. The re-
sults challenge the common belief that advanced FL methods necessarily provide
faster convergence.
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Fig. 3. Comparison of top-1 test accuracy across different Al models. Results show that
Fed Avg maintains stable performance regardless of the underlying model on both blood
cell and skin lesion classification tasks. % denotes the best performance.

Furthermore, zoom-in plots of the final 20 rounds show that FedAvg per-
forms competitively during convergence, suggesting that the added complexity
of recent FL. methods offers limited benefit without tuning. The consistent per-
formance of FedAvg across both medical imaging tasks indicates its robust con-
vergence properties despite its simplicity. This numerical evidence shows that
FedAvg’s simple averaging effectively captures the essential aspects of collabo-
rative learning, making it a reliable choice for medical AI tasks.

Impact of Model Diversity To investigate how different AT models affect FL
performance, we evaluate the top-1 test accuracy across representative vision
models: ViT, DeiT [28], DaViT [6], Swin [18], and MLP-Mixer [27]. As shown
in Fig. 3, for the blood cell classification task, FedGAMMA achieved the best
performance on ViT, DeiT, and MLP-Mixer, while FedSAM led on Swin and
DaViT. In the skin lesion classification task, FedAvg delivered the top results on
DeiT and DaViT, FedSAM excelled on ViT and Swin, and FedCM attained the
maximum performance on MLP-Mixer. Notably, even when FedAvg was not the
best, its performance was nearly indistinguishable from the top method. There-
fore, in resource-constrained environments, FedAvg is the cost-effective choice
for achieving reasonable results without the need for model choice dilemma.
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Table 2. Performance comparison of different FL. methods on blood cell and skin lesion
classification tasks. Results show that advanced FL methods exhibit significant perfor-
mance variations across different hyperparameter settings, while FedAvg (marked with
gray ) maintains consistent performance without any tuning. The time costs for each
FL method are measured when executed independently on a single Gaudi 2 chip.

Method Key @ Blood Cell Task Skin Lesion Task
IID non-IID Time/Round IID non-IID Time/Round

FedAvg - 98.45 98.25 31.04s 81.60 77.86 24.98s
A=0.1 96.52 96.14 74.86 69.98

FedProx A=0.01 9839 98.13 31.91s 81.40 77.96 25.39s
A=0.001 98.42 98.25 81.65 77.91
B=01 96.58 96.23 7721 73.52

FedDyn B =0.01 96.58 96.23 33.28s 7721 73.52 26.96s
B =0.001 96.58 96.23 7721 73.52
pw=01 9784 97.72 75.41 73.92

FedCM uw=0.01 87.99 87.46 32.54s 66.93 50.07 26.38s
©w=0.001 32.42 30.02 66.93  25.69
p=01 9313 85.03 70.17 68.43

FedSAM p=0.01 09848 98.13 45.40s 82.00 78.05 32.11s
p=0.001 98.42 98.22 81.70 78.30
p=0.1 9217 80.06 67.83 67.23

FedGAMMA p=0.01 98.60 98.54 45.75s 82.89 76.61 33.87s
p=0.001 98.68 98.51 83.74 78.30
p=01 3727 42.09 66.88 67.43

FedSpeed p=0.01 9649 9597 45.13s 75.06 72.82 34.28s
p=0.001 96.64 96.26 76.96 73.67
p=0.1 35.78 40.13 66.88 67.53

FedSMOO  p=0.01 96.49 95.97 53.68s 75.11  72.77 40.68s
p=0.001 96.64 96.26 77.06 73.67

Impact of Hyperparameter Selection We examine hyperparameter sensitivity
under both IID and non-IID data by comparing the performance of vanilla FL
and state-of-the-art methods. As presented in Table 2, FedProx is highly sensitive
to the A, showing substantially lower performance at A = 0.1 than at A = 0.001.
Unlike FedProx, FedDyn demonstrates nearly uniform accuracy across different
B values, implying minimal impact of its correction term within a certain range.
Meanwhile, FedCM converges unstably at p = 0.001, recording only about 30%
accuracy on the blood cell classification task. Nextly, FedSAM and FedGAMMA
undergo considerable performance drops at p = 0.1, underscoring their sensi-
tivity to aggressive sharpness exploration. Similarly, FedSpeed and FedSMOO
exhibit reduced initial accuracy, stabilizing only at smaller p values.
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Table 3. Comparison of convergence speed and test accuracy across FL methods using
their sub optimal hyperparameters. Results show that even with optimal settings, ad-
vanced FL methods achieve marginal improvements over FedAvg (marked with gray )
at the cost of hyperparameter tuning.

Blood Cell Task Skin Lesion Task
Method
Top-1 Test Acc. (%) Round Top-1 Test Acc. (%) Round

FedAvg 98.25 99 77.86 96
FedProx 98.25 99 77.96 96
FedDyn 96.23 55 73.52 82
FedCM 97.72 93 73.92 98
FedSAM 98.22 98 78.30 96
FedGAMMA 98.54 98 78.30 87
FedSpeed 96.26 55 73.67 56
FedSMOO 96.26 55 73.67 56

In contrast, Fed Avg consistently surpasses 98% (blood cell) and 77% (skin le-
sion) without additional refinement across both IID and non-IID settings. More-
over, FedAvg requires less time per round than recent FL methods, resulting
in lower communication overhead. The simple design of FedAvg eliminates the
need for tuning complicated hyperparameters, thus saving both time and com-
putational resources. Therefore, the reliability and efficiency of Fed Avg make it
a more practical choice for real-world medical Al applications in resource con-
strained settings, where achieving maximum impact at minimal cost is essential.

Ablation Study To evaluate state-of-the-art FL methods under their sub-optimal
settings, we analyze their convergence behavior using the best-performing hyper-
parameters from our previous experiments. As shown in Table 3, FedGAMMA
achieves 98.54% accuracy and converges in 98 rounds, which is 0.29% higher and
1 round faster than FedAvg. Methods like FedDyn, FedSpeed, and FedSMOO
converge in 55 rounds but show lower accuracy around 96.2%, while FedProx
(98.25%) and FedSAM (98.22%) perform similarly to FedAvg (98.25%). These
results indicate that advanced FL methods may outperform FedAvg, but finding
optimal hyperparameters remains a key challenge requiring further investigation.

4 Conclusion

In this work, we present a comprehensive study of Fed Avg’s stability compared to
advanced FL methods across medical image classification tasks. Our numerical
results show that vanilla FL. maintains robust performance under diverse condi-
tions without requiring hyperparameter tuning. Moreover, we have shown that
advanced FL methods can slightly outperform FedAvg under optimal settings,
the extensive tuning required undermines their practicality. This underscores the
value of vanilla FL as a simple yet effective and reliable solution for medical FL
in resource-constrained settings.
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