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Abstract. Over the past decades, computer-aided diagnosis tools for
breast cancer have been developed to enhance screening procedures, yet
their clinical adoption remains challenged by data variability and in-
herent biases. Although foundation models (FMs) have recently demon-
strated impressive generalizability and transfer learning capabilities by
leveraging vast and diverse datasets, their performance can be under-
mined by spurious correlations that arise from variations in image quality,
labeling uncertainty, and sensitive patient attributes. In this work, we ex-
plore the fairness and bias of FMs for breast mammography classification
by leveraging a large pool of datasets from diverse sources—including
data from underrepresented regions and an in-house dataset. Our ex-
tensive experiments show that while modality-specific pre-training of
FMs enhances performance, classifiers trained on features from individual
datasets fail to generalize across domains. Aggregating datasets improves
overall performance, yet does not fully mitigate biases, leading to sig-
nificant disparities across under-represented subgroups such as extreme
breast densities and age groups. Furthermore, while domain-adaptation
strategies can reduce these disparities, they often incur a performance
trade-off. In contrast, fairness-aware techniques yield more stable and
equitable performance across subgroups. These findings underscore the
necessity of incorporating rigorous fairness evaluations and mitigation
strategies into FM-based models to foster inclusive and generalizable Al.
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1 Introduction

Breast cancer is one of the most significant global health challenges, with over 2.3
million new cases and approximately 670,000 deaths reported in 2022 alone [4].
Early and accurate detection is crucial for improving patient outcomes, and
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mammographic screening, typically confirmed by biopsy, remains a cornerstone
of clinical diagnosis. In recent years, deep learning models have shown promise
in aiding radiologists by extracting breast cancer biomarkers with high perfor-
mance, sometimes even surpassing that of human experts [20]. However, these
models are often developed using datasets drawn predominantly from specific
populations, which tend to under-represent marginalized groups, potentially
leading to biases and reliance on spurious correlations that do not generalize
well across populations [27]. This under-representation is particularly problem-
atic in breast cancer detection, as critical risk factors such as age and breast
density may vary across different ethnicities, and geographic regions [8, 6, 14].

In response to these challenges, foundation models (FMs) have emerged as a
promising solution due to their ability to learn rich and transferable visual repre-
sentations from diverse large-scale datasets [3,25]. By working on pre-extracted
features rather than raw images, FMs offer the potential for improved general-
izability and reduced computational overhead in resource-limited settings [12].
However, recent studies have revealed that FMs are also susceptible to bias, as
they can inadvertently capture spurious correlations inherent in their training
data [13,17]. Such biases raise concerns about the equity of Al systems in clinical
practice, particularly when deployed across diverse demographic groups.

Motivated by these observations, this work investigates the presence of bias
in FMs applied to breast cancer biomarkers detection and explores bias mit-
igation strategies through domain adaptation and fairness techniques. Unlike
previous works primarily assessing FM fairness within individual datasets [17],
we extend our analysis to between-dataset biases and domain shifts. To this
end, we aggregate a diverse set of mammography datasets sourced from various
parts of the world, including underrepresented regions, and supplement them
with an in-house dataset from Lebanon (LBMD) with around 3,000 images from
700 patients. Directly sourced from clinical practice, LBMD captures real-world
complexities often overlooked in curated public datasets, offering an additional
perspective on clinical settings. Our contributions are threefold. First, we con-
duct a comprehensive analysis of bias in FMs by evaluating the risk of spurious
correlations when classifiers are trained on different datasets. Second, we assess
traditional domain-adaptation and fairness strategies as potential solutions to
mitigate these biases. Third, by incorporating the LBMD dataset, we demon-
strate the clinical relevance of our results, addressing disparities in breast cancer
biomarkers detection, and ultimately advancing the development of more robust
and equitable Al tools to support radiologists in diverse clinical settings.

2 Methodology

Let X be the space of mammography images and Y the label space (e.g. {0,1, 2}
for diagnosis or {1,2,3,4} for breast density classification). Each data point is
a triplet (x;,y;,d;), where z; € X is the image, y; € ) its label, and d; € D
denotes the domain or dataset source. The complete dataset is given by & =



Bias & Generalizability of FMs for Mammography 3

Table 1: Summary of bias mitigation and domain-adaptation Methods.

Method Objective (Note: z; = ¢, (¢(z;)), and H(-|-) is conditional entropy)
DANN [10] Lpann (0; %) = Lwer — La (gw(¢(mi))7 di
FairDisCO [9] LFairDisco (0595 ¢.) = LbANN + @Lconf + BLcontr

Leont(0) = = T, & - log(fo(é(21)))

exp(sim(zi,Zj))

Leontr (0, ¢2) = E(i,j)epy log exp(sim(23,2;)) T ke N, exP(im(z,25)))

Lcony max. equal probabilities across D, Lcont¢r max. D-invariant representations.
FADES [16] Lrapes(0;¢;¢-) = Loann + Lrc + Lowmt + Lreg

Lomi(0,9) = Is(fo(2i); gy (¢(2i))|d:i) and Lrc(¢z) = Dkr(zi || 1, z;) aim to

learn disentangled representations: domain-relevant, task-relevant and irrelevant.

Lreg = — (H(fo(zi)|2r) + H(gy(2i)|2r)) to regularize training objective.
GroupDRO [28] LGroupDRO = Ming max . ,|D| ZdeD qa La(0)

Laq(0) = ﬁ > iidi—a K(fg (p(z4)), y7) to minimize empirical worst-group risk.
MOE [19] Lyvoe(0) = % SN e (fM()E(:Ei), yl) , with each expert specialized in one domain.

fuor(@) = X, ae(2)f5(¢(z)) and ae(z) =

exp(wzm)
E T
T exp(wla)

{(z4,vi,d;)}N;. Our goal is to learn a classifier fp : X — Y that achieves high
predictive performance while mitigating any sort of bias.

Feature Extraction and Classification. We extract a representation ¢(x) €
R™ using a frozen, pre-trained FM ¢. A linear probe is then trained over these
features: fo(p(x)) = sigmoid(W ¢(x) + b), where § = {W,b}. We use a weighted
cross-entropy loss: Lwcg(6;S) = + Zi\;l wy, - L(fo(d(x:)),y:), with w,, corre-
sponding to inverse class percentages. Simple minimization of Lywcg may correct
for class imbalance, but might not adequately address domain shift or bias.

Bias and Domain-Adaptation Methods. We investigate several strategies
to promote domain invariance and mitigate biases. Specifically, we explored
two categories of techniques to balance classifiers’ performance across datasets:
i) domain-adaptation strategies (DANN, FairDisCO, and FADES) primarily de-
signed to learn domain-invariant representations, and ii) fairness-aware strate-
gies (GroupDRO, MOE) which explicitly focus on reducing performance disparities
across subgroups. Table 1 summarizes the formulations of each method.

Domain Adversarial Neural Network(DANN) uses adversarial learning to enforce
extraction of domain-invariant features from ¢.(-) by introducing a domain clas-
sifier gy (-) and reversing the gradient of the domain classification loss ¢4 [10].
Fair Disentanglement with Contrastive Learning (FairDisCO) employs adversar-
ial and contrastive learning. It encourages samples from different domains with
the same label to be close in a new feature space ¢,(-) to mitigate bias [9].
Fair Disentanglement with Sensitive Relevance (FADES) penalizes ¢, (-) features
predictive of domain while maintaining those correlated with both domain and
target tasks. It integrates total correlation (T'C), conditional mutual information
(CMI), and adversarial loss to minimize domain information leakage [16].
Group Distributionally Robust Optimization (GroupDRO) explicitly optimizes for
the worst-case performance across domains. By re-weighting the loss based on
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Table 2: Overview of mammography datasets with available scans after selection

and splitting. The number of samples in the training sets is shown in parentheses.
CBIS-DDSM  RSNA  INbreast MIAS CMMD VinDR CDD-CESM KAU-BCMD MMD LBMD

Country Us US/AU Portugal UK China Vietnam Egypt KSA Iraq XXX
Sites 4 2 1 2 2 1 1 4 1
Patients 1,391 1,970 115 165 1,277 930 326 442 745 696
Scans 2,844 9,594 410 322 2,742 3,709 1,003 1,774 745 3,090
Age (y) N/A 59 + 11 N/A  N/A 47+11 44412 50 + 12 19+7 N/A 58 £ 11
Diagnosis v v - v v - v - v
Benign 1,253 (875) 1,487 (1,039) 64 (47) 1,102 (774) 331 (252) 0 1,993 (1,392)
Malignant 1,220 (860) 1,069 (734) 52 (31) 1,640 (860) 331 (239) 125 (88)  2(2)
Density v v v v - v v v - v
A 396 (273) 529 (377) 136 (97) 106 (82) 12 (12) 8 (8) 577 (399) 375 (231)
B 1,103 (760) 2,789 (1,904) 146 (108) 104 (70) 337 (226) 329 (247) 827 (600) 1,050 (746)
C 879 (633) 2,861 (2,095) 99 (64) 112 (77) 2,852 (1,968) 515 (315) 332 (208) 1,012 (717)
D 464 (325) 343 (209) 28 (17) 0 508 (390) 70 (62) 108 (80) 180 (135)

each domain’s D performance, GroupDRO ensures that the model does not favor
majority groups at the expense of under-represented ones [28].
Migzture-of-Experts (MOE) uses a set of expert classifiers f§(-), each specializing
in different domains, and combines their outputs through a gating mechanism
ae(x). This allows the model to adaptively leverage domain-specific expertise
while benefiting from a shared representation, as described in [19].

3 Experiments and Results

Foundation Models. We consider several FMs drawn from recent reviews [25,
21]. MammoCLIP [11] was trained on 25,355 mammograms from the UPMC
dataset using contrastive multi-view learning and yields 2,048-dimensional fea-
tures via its EN-B5 encoder. In contrast, MedCLIP [32] and GLORIA [15]
were developed on 500,000 and 200,000 X-ray images respectively, both employ-
ing a ResNet-50 backbone to produce 512-dimensional embeddings. Additionally,
CLIP [26] was trained on 400 million internet-sourced image-text pairs with con-
trastive learning, while DINOv2 [24] uses a self-distillation framework on 142
million images to generate lightweight representations of size 384.

Datasets. We use mammography datasets from diverse countries and institu-
tions, ensuring a representative analysis. Our collection includes four prominent
datasets: the Digital Database for Screening Mammography (CBIS-DDSM) [29]
from the USA, the RSNA Screening Mammography Breast Cancer Detection
Dataset (RSNA) [7] from the USA and Australia, INbreast [22] from Por-
tugal, and Mammographic Image Analysis Society (MIAS) [31] from the UK.
To further capture diversity and address the under-representation of certain re-
gions, we integrated datasets including the Chinese Mammography Database
(CMMD) [5], VinDr-Mammo [23] from Vietnam, the Categorized Digital
Database for Low Energy and Subtracted Contrast Enhanced Spectral Mammog-
raphy images (CDD-CESM) [18] from Egypt, the King Abdulaziz University
Breast Cancer Mammogram Dataset (KAU-BCMD) [1] from Saudi Arabia,
and the Mammogram Mastery dataset (MMD) [2] from Iraq. Additionally, we
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incorporated the Lebanese Breast Mammography Dataset (LBMD), an inter-
nally curated collection co-developed with our clinical partners at the Lebanese
Hospital Geitaoui and assembled exclusively for this project; all cases within
the LBMD are biopsy-confirmed, and the data collection protocol received full
ethical approval for use in this work.

Sample selection. Our combination of datasets was initially highly imbal-
anced, with some datasets containing over 50,000 samples (e.g. RSNA) while
others had as few as 300 (e.g. MIAS). Additionally, the class imbalance was sig-
nificant within datasets; for instance, 75% of VinDR samples belong to density
class C. To minimize these imbalances and focus on dataset biases, we applied a
sample selection strategy to have more balanced classes. Note that in real-world
clinical settings, datasets are often highly imbalanced, potentially amplifying the
observed biases. First, we dropped samples with no labels for diagnosis or den-
sity class, i.e. the two classification tasks investigated. All labels were aggregated
from the original metadata, where benign and malignant classes were biopsy-
confirmed in most datasets. We categorized patients into three diagnosis classes:
healthy, benign, and malignant. We capped each class at 1,000 patients, ran-
domly sampling when necessary while retaining all available patients in smaller
classes. For VinDR, as this dataset did not contain the diagnosis information,
we applied our sampling selection strategy at the density level. Finally, datasets
were split at the patient level into training (70%) and test (30%) sets, ensur-
ing no data leakage. Table 2 provides more details on the composition of each
dataset after the sample selection strategy.

Implementation details. Images were preprocessed using the framework pro-
posed by [11]. We used a rule-based approach to crop images according to the
breast ROI. We set values less than 40 to 0 and eliminated consistently identical
rows and columns, supposing these denote background. The final images had a
size of 1,520x912. Experiments were implemented in Python v3.10 using Py-
torch v2.4.1. Individual classifiers were trained on each dataset, and Unified on
the aggregated datasets for two tasks: diagnosis and breast density. We searched
for optimal batch size (8, 16, or 32) and learning rate (le-3, le-4, or le-5) us-
ing 3-fold cross-validation within the training set. Hyperparameters giving the
best accuracy after 20 epochs were then used for training on the whole set
for 50 epochs. We used the same hyperparameter optimization for all mitiga-
tion strategies, except for FADES. Due to its computational cost, we fixed the
batch size to 32, the learning rate to le-4, and trained for 30 epochs. Technical
details specific to each strategy are reported in the code and will be publicly
available upon acceptance. We computed differences between F1 score distribu-
tions across datasets using a one-sided Wilcoxon test for statistical significance.
To evaluate the classifiers’ fairness, we computed Equal Opportunity Difference
(EOD) and Average Odds Difference (AOD) across subgroups gi,g92 € G and

labelskey:EOD:(P(Y:k|Y:k,G:gl)—P(Y:k|Y:k,G:gg)>,
and AOD =EOD + (P(Y =k |Y #k,G=g1) —P(Y =k |Y #k,G = g).
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Fig.1: t-SNE visualization of MammoCLIP, color-coded by dataset (A) and
density (B), and FMs: GLORIA (C), MedCLIP (D), CLIP (E), DINOv2 (F).

3.1 Exploring the feature embeddings

Fig. 1 presents a t-SNE-based analysis of features extracted from FMs. The
results illustrate distinct clustering behaviors, reflecting how each FM encodes
mammography-specific characteristics. There is no visible clustering according to
view, aligning with MammoCLIP’s multi-view learning strategy. For other FMs,
this suggests their ability to learn view-invariant features, likely through data
augmentation. MammoCLIP exhibits well-defined clusters, with features from
the same dataset tightly grouped, suggesting strong dataset-specific encoding.
Smoother patterns emerge for CLIP and DINOv2, where at least one t-SNE
component captures dataset-specific information. Features from MedCLIP and
GLORIA are widely dispersed, with no clear dataset-specific clustering. These
models seem to learn more generalized feature representations, likely due to pre-
training on diverse medical images. Interestingly, breast density attributes seem
to impact feature distributions along the t-SNE components, with a smooth
transition from low- to high-dense breasts in MammoCLIP features.

3.2 Robustness of classifiers to domain-shift

Tab. 3 shows the performance of classifiers trained using features extracted from
each FM for diagnosis and breast density classification. For both tasks, Unified
classifiers trained on features from MammoCLIP outperform those based on
GLORIA (p < 0.05, average relative improvement of +15.3%), CLIP (p < 0.01,
+9.7%), and DinoV2 (p < 0.01, +13.3%), highlighting the advantages of pre-
training on modality-specific data compared to domain-related (i.e. X-rays) or
natural images. It is worth mentioning that MedCLIP-based classifiers exhibit
notably poor performance across all tasks, suggesting that the extracted features
may be predominantly noisy. Overall, classifiers have high performance when
tested on the same dataset they were trained on (Indiv. (internal)), with average
F1 scores of 0.73 and 0.53 for MammoCLIP on diagnosis and breast density,
respectively. However, when tested on other datasets (Indiv. (external)), a drastic
drop in F1 scores (up to —50% for diagnosis) was remarkable, potentially due to
overfitting of dataset-specific characteristics encoded in MammoCLIP’s features.
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Table 3: Weighted Fl-score of classifiers: mean + standard deviation across
datasets, overall best performance is in bold. Stars indicate significantly dif-

ferent performance: red stars for lower than MammoCLIP,

stars for higher

than Unified, blue stars for lower than Unified. * = p < 0.01, ** = p < 0.05.

Diagnosis
MammoCLIP MedCLIP GLORIA CLID Dinov2
Indiv. (internal)| 0.73 & 0.11 0.37 £ 0.21 0.68 £ 0.13 0.61 £ 0.14 0.62 £ 0.12
Indiv. (external)| 0.32 & 0.11 0.18 + 0.07 0.28 + 0.08 0.24 + 0.10 0.32 4 0.10
Indiv. (overall) | 0.37 & 0.227 | 0.25 & 0.18 0.38 £+ 0.19" 0.34 + 0.27 0.39 + 0.19”
Unified 0.65 + 0.14 | 0.32 + 0.27 0.58 £ 0.13" | 0.56 £ 0.14"" | 0.57 £ 0.16
DANN [10] 0.54 £ 0.14 0.18 £ 0.16 0.42 £ 0.14 0.46 £ 0.11 0.47 £ 0.07
FairDisCO [9] 0.63 + 0.14 0.18 £ 0.16 0.43 + 0.14 0.56 + 0.15 0.54 + 0.18
FADES [16] 0.62 + 0.16 0.39 4 0.17 0.51 + 0.17 0.54 + 0.19 0.56 & 0.15
MOE [19] 0.64 £ 0.13 0.38 £ 0.04 0.43 £ 0.13 0.49 £ 0.15 0.55 £ 0.16
GroupDRO [28] 0.57 4 0.14 0.32 & 0.27 0.49 + 0.15 0.47 + 0.16 0.54 &+ 0.16
Density
MammoCLIP MedCLIP GLORIA CLIP DinoV?2
Indiv. (internal)| 0.53 £ 0.19 0.32 £ 0.18 0.41 £ 0.19 0.41 £ 0.19 0.50 £ 0.13
Indiv. (external)| 0.42 + 0.08 0.2 + 0.04 0.31 4+ 0.10 0.33 4 0.12 0.4 + 0.07
Indiv. (overall) | 0.41 + 0.16° | 0.22 &+ 0.15 | 0.32 &+ 0.16 | 0.33 £ 0.16 0.4 + 0.14"
Unified 0.59 £ 0.17 | 0.19 + 0.08"" | 0.5+ 0.15 0.5+ 0.16 | 0.51 +0.15
DANN [10] 0.56 £ 0.16 0.19 £ 0.08 0.47 £ 0.14 0.5 £0.14 0.48 £ 0.11
FairDisCO [9)] 0.54 + 0.17 0.19 + 0.08 0.47 + 0.14 0.49 + 0.14 0.48 + 0.12
FADES [16] 0.57 4+ 0.16 0.19 + 0.08 0.49 + 0.15 | 0.54 + 0.16 0.51 4+ 0.15
MOE [19] 0.55 £ 0.17 0.19 £ 0.08 0.42 £ 0.13 0.46 £ 0.13 0.5 £ 0.16
GroupDRO [28] 0.66 + 0.08 0.19 4 0.08 0.52 + 0.11 0.57 4+ 0.06 0.56 + 0.08

3.3 Effectiveness of bias and domain-adaptation strategies

Unified classifiers show performance similar to individual classifiers on their
test sets (internal), with F1 score variations of £15%. Aggregating datasets ef-
fectively improves generalization compared to individual classifiers (overall F1
score improved by +75% and +49%, p < 0.05 with Unified vs. Indiv.). How-
ever, Unified classifiers exhibit performance disparities, with F'1 score standard
deviations of 0.15 across test datasets, suggesting that such aggregation cannot
fully mitigate biases. DANN shows slightly lower overall F1 scores than Unified
classifiers, especially for the diagnosis task. While this technique aims to learn
domain-invariant representations, it seems to do so at the cost of overall perfor-
mance. The mutual information (MI) between features and labels (M1 = 0.07)
is lower than that between features and datasets (M1 = 0.26). By disentangling
dataset-related features, DANN may thus inadvertently discard task-relevant infor-
mation. In addition, this technique might fail in case of severe dataset shift: here,
the mean pairwise Wasserstein distance between datasets’ features increases from
5.75 before adaptation to 101.39 after, and a similar trend is observed between
labels’ features, suggesting the assumption of covariate shift is not met. Simi-
lar observations can be made for FairDisCO, FADES, and MOE. For Breast den-
sity, GroupDRO produces consistently tighter F'1 score distributions than Unified
classifiers with standard deviations of 0.08, 0.06, and 0.08 for MammoCLIP,
CLIP, and DinoV2, respectively, indicating reductions of disparities across test
datasets. Additionally, it outperforms the Unified classifier across FMs, e.g.
MammoCLIP with a relative improvement of 12% (p < 0.01). For diagnosis,
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Fig.2: (Top) AOD scores across datasets for MammoCLIP on breast density.
(Bottom) From left to right: samples from different density groups from A to D,
and from under-represented subgroups (density A, age < 40 and density D, age
>70)). v indicates correctness, X represents misclassification.

mitigation strategies do not improve overall performance nor reduce disparities
compared to Unified, likely due to variability in diagnostic label availability
across datasets, e.g., no benign samples for MMD.

3.4 Bias and domain-adaptation in under-represented subgroups

Certain subgroups are under-represented in our datasets, e.g. breast density
classes A and D representing 11 and 9% of the dataset and age <40 (10%) and
>70 (10%), and are unequally represented across datasets (see Tab. 2). Fig.2
(top) illustrates prediction disparities across datasets and breast density classes,
where AOD ~ 0 indicates fair performance. GroupDRO and DANN achieve the most
fair performance for all breast density classes (AOD a0 > 0.2, AOD i ~ —0.3
and AOD,,4 =~ 0 across breast density classes and datasets), aligning with
DANN’s domain-invariant feature learning strategy. However, for DANN, this fair-
ness comes at the cost of performance (see Tab. 3). GroupDRO stabilizes perfor-
mance across breast density classes, notably improving prediction for class A,
which other classifiers struggled with. This ability to learn across domains, while
favoring under-represented subgroups, is critical for extreme breast densities (A,
D) and age groups due to their strong interplay [8], their association with breast
cancer risk and their influence on the sensitivity of mammography [30]. Fig. 2
(bottom) presents samples from different subgroups and classifiers’ successes
and failures in breast density classification. Variations in contrast, texture, and
patterns across classes and datasets may introduce spurious correlations, un-
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derscoring the need for fairness-aware strategies.GroupDRO seems to effectively
mitigate biases and could be further refined with more fine-grained attributes.

Conclusion

This paper explores biases in FM for breast mammography classification. Our
analysis reveals that modality-specific pre-training of FM is beneficial for perfor-
mance, but individual classifiers still fail to generalize well beyond their training
data. Aggregating datasets enhances overall performance, emphasizing the need
for broader dataset contributions. However, this strategy is insufficient to miti-
gate biases, resulting in disparities across underrepresented subgroups. Domain-
adaptation strategies address these disparities, but often at the cost of perfor-
mance, suggesting that general-purpose FMs may encode more image- than task-
related information. On the other hand, fairness-aware techniques ensure equi-
table performance across underrepresented subgroups and classes. These findings
have significant implications for deploying Al-driven mammography analysis in
clinical practice. Such shortcuts can lead to biased models, over-predicting each
dataset’s majority class, a critical situation in case of high negative rates or
poor accuracy on underrepresented populations. Future works will investigate
the root causes of these shortcuts, paving the way for new fairness constraints
and bias mitigation strategies for FMs training and fine-tuning.

Acknowledgments SA would like to acknowledge the partial support from the Ger-
man Academic Exchange Service (DAAD) with funds from the Federal Foreign Office
(AA). It was also developed within the interdisciplinary framework of the Arab-German
Young Academy of Sciences and Humanities (AGYA), which is funded by the German
Federal Ministry of Education and Research (BMBF) under grant 01DL20003. The
authors thank their colleagues at the Lebanese Hospital Geitaoui, Beyrouth, Lebanon
for their support.

Disclosure of interests The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Alsolami, A.S., Shalash, W., Alsaggaf, W., et al.: King Abdulaziz University
Breast Cancer Mammogram Dataset (KAU-BCMD). Data 6(11), 111 (2021).
https://doi.org/10.3390/data6110111

2. Aqdar, K.B., Abdalla, P.A., Mustafa, R.K., et al.. Mammogram Mastery: A
Robust Dataset for Breast Cancer Detection and Medical Education 1 (2024).
https://doi.org/10.17632/fvjhtskg93.1

3. Bommasani, R., Hudson, D.A.; Adeli, E., et al.: On the opportunities and risks of
foundation models (2022)

4. Bray, F., Laversanne, M., Sung, H., et al.: Global cancer statistics 2022: Globocan
estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA: a cancer journal for clinicians 74(3), 229-263 (2024)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

E. Germani et al.

Cai, H., Wang, J., Dan, T., et al.: An Online Mammography Database
with Biopsy Confirmed Types. Scientific Data 10(1), 123 (2023).
https://doi.org/10.1038/s41597-023-02025-1

del Carmen, M.G., Halpern, E.F., Kopans, D.B., et al.: Mammographic Breast
Density and Race. American Journal of Roentgenology 188(4), 1147-1150 (2007).
https://doi.org/10.2214/AJR.06.0619

Carr, C., Kitamura, F., Kalpathy-Cramer, J., et al.: Rsna screening mammography
breast cancer detection. 2022

Checka, C.M., Chun, J.E., Schnabel, F.R., et al.. The Relationship of
Mammographic Density and Age: Implications for Breast Cancer Screen-
ing. American Journal of Roentgenology 198(3), W292-W295 (2012).
https://doi.org/10.2214/AJR.10.6049

Du, S., Hers, B., Bayasi, N., et al.: Fairdisco: Fairer ai in dermatology via disentan-
glement contrastive learning. In: European Conference on Computer Vision. pp.
185-202 (2022)

Ganin, Y., Ustinova, E., Ajakan, H., et al.: Domain-adversarial training of neural
networks. Journal of machine learning research 17(59), 1-35 (2016)

Ghosh, S., Poynton, C.B., Visweswaran, S., et al.: Mammo-CLIP: A Vision Lan-
guage Foundation Model to Enhance Data Efficiency and Robustness in Mam-
mography. In: Medical Image Computing and Computer Assisted Intervention —
MICCAI 2024. pp. 632-642 (2024). https://doi.org/10.1007/978-3-031-72390-2 59
Girdhar, R., El-Nouby, A., Liu, Z., et al.. ImageBind One Embedding
Space to Bind Them All. In: 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 15180-15190 (2023).
https://doi.org/10.1109/CVPR52729.2023.01457

Glocker, B., Jones, C., Roschewitz, M., et al.: Risk of Bias in Chest Radiography
Deep Learning Foundation Models. Radiology: Artificial Intelligence 5(6), €230060
(2023). https://doi.org/10.1148 /ryai.230060

Heller, S.L., Hudson, S., Wilkinson, L.S.: Breast density across a regional screen-
ing population: effects of age, ethnicity and deprivation. The British Journal of
Radiology 88(1055), 20150242 (2015). https://doi.org/10.1259/bjr.20150242
Huang, S.C., Shen, L., Lungren, M.P., et al.: Gloria: A multimodal global-local
representation learning framework for label-efficient medical image recognition.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 3942-3951 (2021)

Jang, T., Wang, X.: Fades: Fair disentanglement with sensitive relevance. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 1206712076 (2024)

Jin, R., Xu, Z., Zhong, Y., et al.: FairmedFM: Fairness benchmarking for medical
imaging foundation models. In: The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (2024)

Khaled, R., Helal, M., Alfarghaly, O., et al.: Categorized contrast enhanced mam-
mography dataset for diagnostic and artificial intelligence research. Scientific Data
9(1), 122 (2022). https://doi.org/10.1038 /s41597-022-01238-0

Li, B., Shen, Y., Yang, J., et al.: Sparse mixture-of-experts are domain generalizable
learners. In: The Eleventh International Conference on Learning Representations
(2023)

McKinney, S.M., Sieniek, M., Godbole, V., et al.: International evaluation of an ai
system for breast cancer screening. Nature 577(7788), 89-94 (2020)



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Bias & Generalizability of FMs for Mammography 11

Moor, M., Banerjee, O., Abad, Z.S.H., et al.: Foundation models for
generalist medical artificial intelligence. Nature 616(7956), 259-265 (2023).
https://doi.org/10.1038 /s41586-023-05881-4

Moreira, I.C., Amaral, I., Domingues, 1., et al.: INbreast: Toward a Full-field
Digital Mammographic Database. Academic Radiology 19(2), 236-248 (2012).
https://doi.org/10.1016 /j.acra.2011.09.014

Nguyen, H.T., Nguyen, H.Q., Pham, H.H., et al.: VinDr-Mammo: A large-scale
benchmark dataset for computer-aided diagnosis in full-field digital mammography.
Scientific Data 10(1), 277 (2023). https://doi.org/10.1038/s41597-023-02100-7
Oquab, M., Darcet, T., Moutakanni, T., et al.: DINOv2: Learning Robust Visual
Features without Supervision. Transactions on Machine Learning Research (2023)
Paschali, M., Chen, Z., Blankemeier, L., et al.: Foundation Models in Radi-
ology: What, How, Why, and Why Not. Radiology 314(2), €240597 (2025).
https://doi.org/10.1148 /radiol.240597

Radford, A., Kim, J.W., Hallacy, C., et al.: Learning Transferable Visual Models
From Natural Language Supervision. In: Proceedings of the 38th International
Conference on Machine Learning. pp. 8748-8763 (2021)

Ricci Lara, M.A., Echeveste, R., Ferrante, E.: Addressing fairness in artificial
intelligence for medical imaging. Nature Communications 13(1), 4581 (2022).
https://doi.org/10.1038 /s41467-022-32186-3

Sagawa, S., Koh, P.W., Hashimoto, T.B., et al.: Distributionally robust neural
networks. In: International Conference on Learning Representations (2019)
Sawyer-Lee, R., Gimenez, F., Hoogi, A., et al.: Curated breast imaging subset
of digital database for screening mammography (cbis-ddsm) [data set] (2016).
https://doi.org/https://doi.org/10.7937/K9/TCIA.2016.7002S9CY

Sinclair, N., Littenberg, B., Geller, B., Muss, H.: Accuracy of Screening Mammog-
raphy in Older Women. American Journal of Roentgenology 197(5), 1268-1273
(2011). https://doi.org/10.2214/AJR.10.5442

Suckling, J., Parker, J., Dance, D., et al.: Mammographic Image Analysis Society
(MIAS) database v1.21 (2015). https://doi.org/10.17863/CAM.105113

Wang, Z., Wu, Z., Agarwal, D., et al.:. MedCLIP: Contrastive Learning
from Unpaired Medical Images and Text. Proceedings of the Conference
on Empirical Methods in Natural Language Processing. Conference on Em-
pirical Methods in Natural Language Processing 2022, 3876-3887 (2022).
https://doi.org/10.18653/v1/2022.emnlp-main.256



