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Abstract. With the rise in respiratory diseases, the workload on radiol-
ogists is increasing, leading to a higher risk of diagnostic errors. One ap-
proach to improve diagnostic processes is to reduce the frequency of cog-
nitive and perceptual errors made by humans. This study aims to predict
radiologists’ diagnostic errors while interpreting chest X-rays using eye-
tracking technology. We propose a novel method that combines human
attention, derived from the locations of gaze fixation points, with atten-
tion from transformer neural networks. The resulting attention maps are
combined with the segmentation of anatomical structures, including the
lungs, clavicles, hila, heart, mediastinum, and esophagus, which restricts
the analysis for regions potentially relevant for thoracic disease diagno-
sis. Attention maps are computed for each gaze fixation point, creating
a longitudinal path representing the X-ray reading process. Finally, we
applied Gated Recurrent Units (GRUs) to learn from the longitudinal
attention maps and statistical gaze features to predict potential X-ray
diagnostic errors. The proposed methodology was validated on 4, 000
chest X-ray readings performed by four radiologists. The model achieved
an error detection accuracy of 0.79, measured as the area under the re-
ceiver operating characteristic (ROC) curve. The code is available at
https://github.com/annshorn/TEGRU
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1 Introduction

Despite significant advances in Artificial Intelligence (AI), integrating AI as a
tool for computer-aided diagnosis (CAD) remains a challenging task; moreover,
some patients are not ready to trust AI-generated diagnoses [1–4]. Therefore,
instead of aiming for full automation and eliminating the human factor, AI can
serve as an auxiliary tool in diagnostics. A promising approach for practical
AI utilization into clinical workflows is to combine AI with eye-tracking sen-
sors to assess radiologists’ performance [5]. For example, such a combination
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allows models to reveal cognitive processes [6], understand the reading patterns
of radiologists at different levels [7, 8], and assist in training of less experienced
radiologists [9, 10]. It also helps detect radiologists’ decision errors by directly
capturing what radiologists look at and, more importantly, what they miss dur-
ing image interpretation, as demonstrated in fields such as dentistry [11], mam-
mography [12–14], and thoracic radiography [15–18]. While in traditional AI
CAD, radiologists and AI complete their tasks separately, eye-tracking enables
continuous communication between human and computer, allowing for quicker
error detection and intervention [5].

Despite numerous studies, the field of predicting radiological errors from
gaze data remains largely underinvestigated. Most studies focus on localized
diseases like tumors, neglecting systemic conditions affecting multiple areas. Ad-
ditionally, they analyze static gaze fixations without considering longitudinal
gaze patterns. Such static analysis can sometimes turn into the estimation of
whether the reader visually captured the abnormality location. In this work, we
introduce a transformer-based algorithm that predicts radiological errors while
reading chest X-rays with various abnormalities. The algorithm captured the
reader’s gaze over anatomically distinctive locations and analyzed the longitu-
dinal patterns of such data. It also combined transformers with recurrent neural
networks trained on statistical gaze features, learning from both longitudinal
image and gaze information. The algorithm was validated on 4000 chest X-ray
readings from four radiologists.

2 Methodology

2.1 Data collection

Experiment: Four board-certified radiologists (3 – 30 years of experience) ana-
lyzed 1000 publicly available chest X-rays from VinDr-CXR [19], CheXpert [20],
RSNA [21], and SIIM-ACR [22] while their reading patterns were recorded.
Among images, 420 did not contain any disease, 119 contained one disease,
143 contained two diseases, 318 contained three or more diseases, including
pulmonary fibrosis (223 cases), aortic enlargement (193), cardiomegaly (152),
pneumothorax (93), and other abnormalities like pleural thickening, lung opac-
ity, pleural effusion, atelectasis, and nodules. To minimize fatigue and speed up
diagnosis recording, radiologists provided detailed verbal reports instead of fill-
ing out paperwork. Each participated on two non-consecutive days without prior
night shifts.
Technical details: To replicate typical working conditions, radiologists were
placed in an isolated, quiet room with a 10-bit LG monitor (3840 × 2160 res-
olution, pixel density ρ = 7.31 px/mm), a Tobii Eye Tracker 4C (90 Hz), and
a Logitech 960 microphone for voice recording. The eye tracker was positioned
to avoid interfering with image reading. A specialized user interface was devel-
oped to minimize distractions, allowing control with a single "Enter" button.
Diagnoses were dictated and manually processed for analysis.
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Fig. 1. Representation of image preparation for the Vision Transformer and formation
of anatomical patches. Panel (a) shows the target X-ray image, whereas panel (b) shows
the source X-ray image. The images are first segmented using a neural network. Both
segmentations are uniformly filled with points, which then guide the Coherent Point
Drift algorithm for aligning the target image anatomies to the source image anatomies.
Finally, a subsample of registered points is selected as centers for anatomically aligned
patches between the two images. Panel (c) and (d) show attention maps M construc-
tion.

2.2 Feature preprocessing

Calculation of fixation points: During the perception of visual information,
two types of eye movements are involved: saccades and fixations. Fixation points
are moments when the eye remains still and focused on a specific point in the
scene. Saccades are characterized by rapid eye movements that occur between
fixations. These two types of movements alternate with each other, but the
information capture occurs only during fixations [23]. To identify fixation points,
we calculated the angular velocity of the eye movements. Movements exceeding
a threshold of 30 degrees per second were classified as saccades and excluded
from further analysis [24].
Reading features: Previous studies show that fixation analysis reveals pat-
terns linked to radiologists’ experience [25,26] and aids in evaluating diagnostic
performance [13,27]. Based on this, we computed features such as fixation count,
average distance and angle between fixations, and lung-to-lung transitions. To
facilitate this, we introduced a distance matrix Dt, where each cell stores the
distance between (xt, yt) to the nearest fixation point. We denoted Pt as a set of
all fixation points that have been collected up to fixation t. Using distance ma-
trix Dt, we calculated the coverage of the right and left lungs, and the amount of
information the radiologist obtained at each new fixation. The visual coverage of

the lungs for fixation points can be computed as ψ(y, t) = exp

(
− |(x,y)−y|2

2·z·ρ·tan2( θ
2 )

)
,
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where z is the distance between the monitor and the radiologist’s eyes, θ is a
viewing angle, and ρ is the pixel density of the monitor. The amount of new
information about the lung area that the radiologist gains at each fixation point
during image reading is calculated as s(t) =

∑
y ψ(y,t)·Il(y)∑

y Il(y)
, where Il is the lung

segmentation array obtained using a contour-aware U-Net [28], which outper-
forms standard U-Net by incorporating contour loss to penalize border segmen-
tation errors, where mistakes are more frequent and harder to correct.
Longitudinal reading features: For each fixation point (x, y) ∈ X′, where
X′ = {(x1, y1), . . . , (xT′ , yT′)} defines the sequence and total reading length
T′, we computed d features as a vector: (xt, yt) 7→

[
ζ
(t)
1 . . . ζ

(t)
d

]
. The number of

fixation points determines the feature set length. Since X′ varies in T′, we define
a fixed T: if T′ < T, we pad; if T′ > T, we merge initial fixations, precomputing
their statistics in ζ(t=t0)1...d . This ensures a uniform fixation set X and length T.

2.3 Anatomical patches

Beyond gaze features, we analyzed which X-ray areas attracted radiologists’ at-
tention, as decision errors depend on both eye movement patterns and anatomi-
cal regions viewed. Effective analysis must consider fixation sequence, duration,
and gaze returns while focusing only on relevant anatomical areas. To achieve
this, we propose using anatomy- and gaze-restricted visual transformers (ViT).
Unlike classical (grid-based) division images into uniform patches [29] for ViT,
we propose to focus ViT on gaze over anatomically relevant areas. In particu-
lar, we used the pre-trained PSPNet from the TorchXRayVision library [30] to
identify and segment the clavicles, lungs, hila, heart, aorta, mediastinum, and
esophagus.

A randomly selected image Iref and its segmentation masks Mref (Fig. 1,
the panel (a)) served as the reference anatomy. From the segmentation mask
Mref two sets of densely sampled Wref and sparsely sampled Vref points are
extracted. For a previously unseen image In, and its automatically-generated seg-
mentation masks MIn (Fig. 1, the panel (b)), the densely sampled set WIn was
generated and then registered to Wref using the Coherent Point Drift (CPD)
algorithm. The transformation matrix of CPD allows us to deform sparsely sam-
pled set VIref towards In resulting in an anatomically consistent sparsely sam-
pled set VIn . CPD treated Vref as Gaussian centers, optimizing their positions
to maximize the likelihood of VIn by minimizing the negative log-likelihood
function:

P (VIn |Vref ) =

N∏
i=1

 M∑
j=1

wj exp

(
− 1

2σ2
∥yi − xj∥2

)
+ wout

 , (1)

where wj represents the weight of the j-th Gaussian component, indicating the
probability that a data point yi corresponds to the model point xj ; σ2 is the
variance of the Gaussians; and wout accounts for the probability of outliers. Using
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point from sets VI as centers, patches {pl}Ll=1 was formed, ensuring anatomical
consistency across images. Finally, positional encoding from transformers [31]
was applied to incorporate sequence information.

2.4 Attention maps

After obtaining {pl}Ll=1, we computed attention maps M (Fig. 1, the panel (c)
and (d)), which guide the ViT to focus on relevant image regions by assigning
varying weights. In other words, M should indicate which patches are important
for calculating the attention score and which are not. Specifically, we incorpo-
rated the information about the reader’s gaze into M, i.e., visually observed
areas up to the current fixation t. At each fixation t, the fixation point (xt, yt) is
mapped to the image. If (xt, yt) falls within a segmented anatomical region, the
corresponding patch pl is marked as diagnostically important. Let S(t) denote
the set of patches that are considered important from the beginning up to fix-
ation t, forming the attention map vector M(t) = [M

(t)
1 ,M

(t)
2 , . . . ,M

(t)
L ], where

each element of M(t)
l is defined as follows:

M
(t)
l =

{
0, pl ∈ S(t),

−∞, pl /∈ S(t),
(2)

for ∀l ∈ 1, L. The M(t) is updated at the next fixation t + 1 based on the set
S(t+1), and this process continues throughout the sequence of fixations.

2.5 Network for diagnostic error prediction

The model receives two input sequences corresponding to reading features and
visual X-ray information. The first sequence has dimensions of (T × ζ), where
ζ =

[
ζ
(t)
i

]
t=1:T,i=1:d

represents the reading features matrix. The second sequence

contains {pl}Ll=1 with dimensions (L×w×h), where w and h are the width and
height of a patch. For each fixation t, the map M(t) = [M

(t)
1 ,M

(t)
2 , . . . ,M

(t)
L ] is

generated based on S(t).
Transformer Encoder: The ViT’s input consists of {pl}Ll=1 and M(t). Each
patch pl is linearly transformed into embedding ϵl. At the beginning of the input
embeddings ϵ = {ϵ1, ϵ2, . . . , ϵL}, we add a classification (CLS) token ϵ

(t)
CLS . The

role of the CLS token is to act as an aggregate representation of the entire image,
summarizing the information after it has been processed through the transformer
layers. We modified the mask M(t) to fit the requirements of the multi-head
attention (MHA) block, where each of h heads performs a separate attention
function. The mask M(t) was duplicated for each head and then expanded to
the size L × L by doubling the elements for each patch length. For each head
i, i ∈ 1, h, the input ϵ is linearly projected to queries Qi, keys Ki, and values Vi.
The attention score A(Qi,Ki,Vi)t is then calculated and concatenated into a
single matrix MultiHead(Q,K,V)t = A(Q1,K1,V1)⊕· · ·⊕A(Qh,Kh,Vh) [29].
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Fig. 2. Illustration of the proposed neural network. As an initial step, the input image
is decomposed into anatomical patches {pl}Ll=1 and longitudinal reading features. At
each fixation t, the transformer encoder first receives all the patches {pl}Ll=1 and a
map M(t). This map indicates which areas of the image the radiologist has already
reviewed and are therefore considered important. The vector representation of the
patches {pl}Ll=1 passes through a linear layer to obtain embeddings ϵ. Then, a classifi-
cation (CLS) token is added, and positional encoding is applied. The ϵ along with M(t)

pass through the Transformer Encoder to generate the current state embedding. The
extracted CLS token is combined with the reading features

[
ζ(t) ⊗ ϵ

(t)
CLS

]
and fed into

a Gated Recurrent Unit (GRU), which are then used to predict the reading error as a
weighted sum of the GRU outputs.

Following with, with a fully connected layer, we extract the classifier token ϵ(t)CLS
from the transformer encoder.

Prediction with Gated Recurrent Unit (GRU): The ϵ(t)CLS is concatenated
with ζ(t) =

[
ζ
(t)
1 ζ

(t)
2 . . . ζ

(t)
d

]
to form an input vector to the GRU cell. At each

fixation t, the GRU output ht is generated and concatenated into a matrix τ
of size T × Hout. The τ passes through a multilayer perceptron (MLP) to cal-
culate the predictions of the X-ray reading outcome for each step from 1 to T.
Considering that we are much less certain about the reading outcome when only
the first few fixations are observed, compared to when most of the fixations are
observed, different weights should be assigned to prediction at different fixation
points. Following this logic, we weight each GRU outcome using coefficient vec-

tor w =
[

2k
T(T+1)

]T
k=1

and calculate the predicted X-ray reading error as the
weighted sum of the outcomes.
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Table 1. Results of the comparison between existing and proposed methods on the
collected dataset. (1) Spatial Frequency Bands (SFB) are the spatial frequency bands determined
based on the wavelet coefficients obtained by decomposing the image using the stationary wavelet
packet transform at the 3d level of decomposition. (2) Region of Interest (ROI) is a specific area
within an image that attracts attention or contains abnormality. (3) Statistical and Gabor features
represent first-order and second-order statistics (entropy, standard deviations, contrast, correlation,
energy, homogeneity) and Gabor wavelet features.

Method Longitudinal Transformer AUC Micro Average Macro Average
features based Precision Recall F1-score Precision Recall F1-score

Proposed with Anatomical patches ✓ ✓ 0.7869 0.7463 0.7463 0.7463 0.7411 0.7352 0.7373
ResNetAE w/c GRU [18] ✓ 0.7755 0.7266 0.7266 0.7266 0.7266 0.732 0.725
TransGATConv [17] ✓ ✓ 0.7442 0.6798 0.6798 0.6798 0.6886 0.6914 0.6795
Proposed with
classical (grid-based) patches

✓ ✓ 0.7228 0.6675 0.6675 0.6675 0.6948 0.6892 0.667

SVC with SFB(1) features [15] 0.6792 0.6595 0.6595 0.6595 0.6535 0.6589 0.6535
ResNet-152 with ROI(2) [14] 0.614 0.5663 0.5663 0.5663 0.5919 0.5911 0.5662
J48 with Statistical and Gabor
features(3) [16]

0.5728 0.617 0.617 0.617 0.591 0.5733 0.5684

iALD (base ResNet-152) [32] 0.5263 0.5334 0.5334 0.5334 0.5396 0.5299 0.5012

3 Experiment and results

Database: From 4, 000 X-ray reading, we removed readings that were too short,
i.e. contained only a few fixations or had many corrupted recording points when
the reader moved far away from the screen. As a result, the training set included
826 cases (2, 644 readings with correct diagnoses, and 612 with diagnostic errors),
and testing contained 134 cases (234 correct and 173 incorrect diagnoses). Since
some X-rays contained multiple abnormalities, a diagnostic error was defined
as a case where the radiologist either did not mention any of the abnormalities
present or mentioned an abnormality while the X-ray contained none.
Training: The model input included a feature sequence (T× ζ) = (97× 27 and
patches of size (L×w×h) = (97×16×16). If multiple points (x1, y1) and (x2, y2)
fell within the same patch, it was added to S only once, with fixation statistics
updated accordingly. Each patch was represented as a 256-length vector, trans-
formed via a linear layer into embeddings ϵ of size (97 × 512). By adding the
CLS token, the dimension became (98 × 512). The MHA used 2 heads with a
dropout of 0.1. The modified mask M(t) had a size of (2×97×97). After passing
through the transformer encoder, a vector ϵ(t)CLS of length 16 was extracted and
concatenated with ζ(t), forming length of 43. The GRU had 6 layers with a ht of
16, producing an output matrix τ of size (T×Hout) = (97× 16). A final linear
layer with softmax generated predictions for 97 steps. The model was trained
with a batch size of 8 for 100 epochs using Adam optimizer at a learning rate of
1× 10−5.
Results: Table 1 presents the results of comparing the proposed method with
existing methods dedicated to recognizing diagnostic errors by radiologists. The
results indicate that longitudinal features outperform other feature-based meth-
ods in terms of metrics. It is important to emphasize that while most existing
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methods focus on localized diseases [14–16], we are testing these methods on
both localized diseases and diseases that affect multiple areas. For each method,
we followed the exact protocol suggested by the authors by making some adjust-
ments to accommodate the algorithm to our data format.
Ablation experiments: Table 1 confirms that the proposed use of anatomi-
cal patches outperforms classical (grid-based) patches. The use of CPD ensures
the correspondence between the patches, i.e., the l−th patch pml on image Im
anatomically corresponds to the l−th patch pnl on image In. With this property,
the model is expected to be more resistant to changes in input images, such as
rotations. To test this, we applied a random 10° rotation and 10% scaling to test
X-rays and gaze data and measured the resulting changes in the error predic-
tion performance. Accuracy declined by only 0.6− 0.9% AUC with CPD-based
patches but dropped significantly by 3.43 − 4% AUC for standard grid-based
patches.

4 Discussion

In this work, we explored the application of eye-tracking data to predict diagnos-
tic errors made by radiologists during chest X-ray readings. Methodologically, we
proposed augmenting the transformer neural network with anatomically sampled
patches and an attention matrix corresponding to the fixation-based attention.
Such an approach bridged the intuition about human perception and image
processing with neural networks. Moreover, it allowed us to exclude from con-
sideration visual attention focused on screen areas outside the target anatomical
structures, which pollutes the gaze data.

Patch size is a hyperparameter, with studies exploring its optimal value for
transformer training. Nguyen et al. [33] found that smaller patches improve
transformer results, peaking at 1 × 1 pixel-size patches. However, transformer
complexity grows non-linearly as patch size decreases, since sequence length in-
creases proportionally to the inverse square of patch size [29]. Smaller patches
also often process less informative areas (e.g., background). Anatomical patches
avoid this issue by focusing on relevant regions. In our case, the patch size should
be small enough to improve transformer performance but large enough to capture
meaningful anatomical information. A 16×16 patch corresponds to a viewing an-
gle of 1.73◦, close to the foveal vision range (1.5◦) [34]. Using anatomical patches
instead of classical (grid-based) equidistant patches also reduced computational
complexity by focusing only on relevant image regions.

We trained a RandomForestClassifier only on gaze features, achieving an
AUC of 0.694, outperforming non-longitudinal features (Table 1). This observa-
tion indicates that radiologists’ way of reading X-rays changes when they make
errors. We computed the odds ratio (ORs) of the erroneous diagnosis if an in-
dividual gaze feature was above or below the median value for this feature for
all participating radiologists. The number of gaze switches between lung fields,
i.e., moments when fixation moves from left to right lung field or vice versa, had
an OR of 0.4, meaning that the readings with a high number of switches are
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2.5 times more likely to be erroneous than the readings with a low number of
switches. Features that also exhibited statistically significant ORs included the
number of fixations per reading (OR = 0.44), number of visits of the left (OR
= 0.48) and right (OR = 0.48) lung fields, and mean information gain (OR =
2.1). High mean information gain indicates that the reader gains a lot of new
information from each fixation, i.e., they cover the image effectively without get-
ting stuck around already observed areas. Overall, the readings that result in a
correct diagnosis are more likely to have fewer fixations, which are distributed
more efficiently over the anatomy. This is in agreement with observations in
eye-tracking literature [35].
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