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Abstract. Deformable retinal image registration is notoriously difficult
due to large homogeneous regions and sparse but critical vascular fea-
tures, which cause limited gradient signals in standard learning-based
frameworks. In this paper, we introduce Gaussian Primitive Optimiza-
tion (GPO), a novel iterative framework that performs structured mes-
sage passing to overcome these challenges. After an initial coarse align-
ment, we extract keypoints at salient anatomical structures (e.g., ma-
jor vessels) to serve as a minimal set of descriptor-based control nodes
(DCN). Each node is modelled as a Gaussian primitive with trainable
position, displacement, and radius, thus adapting its spatial influence to
local deformation scales. A K-Nearest Neighbors (KNN) Gaussian inter-
polation then blends and propagates displacement signals from these
information-rich nodes to construct a globally coherent displacement
field; focusing interpolation on the top (K) neighbors reduces compu-
tational overhead while preserving local detail. By strategically anchor-
ing nodes in high-gradient regions, GPO ensures robust gradient flow,
mitigating vanishing gradient signal in textureless areas. The framework
is optimized end-to-end via a multi-term loss that enforces both key-
point consistency and intensity alignment. Experiments on the FIRE
dataset show that GPO reduces the target registration error from 6.2 px
to 2.4px and increases the AUC at 25 px from 0.770 to 0.938, substan-
tially outperforming existing methods. The source code can be accessed
via https://github.com /xintian-99/GPOreg,.
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1 Introduction

Retinal image registration is central to many clinical and research applications,
including longitudinal monitoring of diseases such as diabetic retinopathy or
age-related macular degeneration, as well as multi-modal fusion for enhanced
diagnostic accuracy [18)24]. However, deformable retinal registration remains
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Fig. 1. Visualization of gradient backflow in a retinal image under normalized cross-
correlation (NCC). The original image (left) is preprocessed and normalized to [0,1].
Heatmaps (right) show the absolute NCC gradients for x-axis shifts of 16, 32, and 48
pixels. High responses indicate effective gradient propagation; low responses correspond
to homogeneous or vessel-sparse regions.

difficult due to the dominance of large homogeneous (textureless) regions and
the sparse distribution of salient vasculature (less than 15% of the area) [10],
which provides limited gradient signals and hampers accurate correspondence.
As shown in Fig. [T} the scarcity of vessel edges leads to weak gradients, while
large flat regions offer little to no signal, presenting a challenge for both classical
and learning-based registration methods.

Traditional registration methods iteratively optimize a similarity metric (e.g.,
normalized cross-correlation (NCC), or mutual information (MI)) using gradient-
based approaches [II12]. However, they are prone to local minima, and even ad-
vanced discrete optimization techniques [8I23I25] often fail when images contain
the extensive homogeneous regions and sparse vascular structures characteristic
of the retina.

Modern deep learning-based approaches have also struggled to overcome this
issue, broadly falling into three paradigms. (i) Regression-based methods di-
rectly predict transformation parameters in a single forward pass (e.g., affine or
flow predictors [2IBIT6J29)31]) for a coarse global alignment, but fail to model
fine, local deformations and are susceptible to vanishing gradients in texture-
less regions. (ii) Descriptor-based methods [ABITAUT5ITII21126] detect and match
salient keypoints (usually on vessel junctions or other distinctive structures) to
guide the transformation, but typically compute a single global transformation
(e.g., homography) lacking an explicit data-fidelity term to refine local misalign-
ments. More advanced (iii) learning and iterative optimization based frameworks
[6ITIT7I20022132] integrate neural networks into multi-scale or iterative optimiza-
tion pipelines. However, their reliance on dense image similarity or a simple
smoothness regularizer lets loss function become dominated by easily aligned
homogeneous regions, causing the crucial gradient signal from fine structures
"diluted" or averaged out. Thus, thin vessels and other subtle anatomical fea-
tures remain insufficiently registered due to restricted gradient backpropagation.

In summary, classical optimization methods can become trapped in local min-
ima, while descriptor-based solutions often compute a single global transforma-



Gaussian Primitive Optimized Deformable Retinal Image Registration 3

tion, lacking the flexibility for local refinement. Furthermore, modern learning-
based approaches suffer from gradient signal dilution, as the ambiguous displace-
ment estimation in vast, textureless regions causes their loss to overwhelm the
critical alignment signals from the sparse vasculature. A robust solution must
therefore facilitate message passing to propagate displacement information from
high-confidence vascular structures to these ambiguous regions in the network
design [27128/30]. To address these challenges, we propose Gaussian Primitive
Optimization (GPO), a deformable registration framework designed specifically
for sparse-feature medical images. Our key contributions are:

— We address gradient signal dilution by anchoring a minimal set of descriptor-
based control nodes at salient keypoints, such as major vessels, which pre-
serves the crucial displacement information provided by vascular structures.

— Our KNN-based Gaussian interpolation serves as a structured message pass-
ing mechanism, propagating displacement signals from the control nodes into
feature-sparse regions and blending local transformations into a globally co-
herent and locally precise alignment.

— On the FIRE dataset, GPO lowers the target registration error from 6.20 px
to 2.35 px and increases the AUC@Q@25 px from 0.770 to 0.938, demonstrating
both higher accuracy and fewer outlier errors compared to previous methods.

2 Methodology

We propose a Gaussian Primitive Optimized (GPO) framework for retinal image
registration, organized into four main stages. First, we perform coarse alignment
using a descriptor-based network, which also yields matched keypoints to serve
as control nodes. Next, each node is initialized as a Gaussian primitive with
learnable position, displacement, and an adaptive radius. Then, we compute
the deformation field via a structured message passing process, where a KNN
Gaussian interpolation blends local transformations to accommodate complex
retinal deformations. Finally, all parameters are iteratively optimized under a
multi-term loss that enforces both intensity alignment and global consistency.

Formally, given a fixed image Iy: {2 — R and a moving image I,,: 2 — R,
we seek a transformation 7 : R? — R? satisfying

I(x) & L (x + u(x)), (1)

where u(x) is the displacement field our GPO optimizes.

2.1 Coarse Alignment & Control Node Initialization
We first obtain a coarse alignment of I,,, to I¢ by estimating a global transform:

L5009 (x) = L (A + D), (2)

where A and b represent an affine, homography, or other global parameters
learned by a descriptor-based network (e.g., GeoFormer [I4]). Concurrently, the
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Fig. 2. Overview of GPO: control node initialization, KNN-based Gaussian blending,
and iterative parameter updates.

network provides N matched keypoints {(gf, ™)}, in I and I{$*™*, forming
descriptor-based control nodes (DCN) (Fig. , which act as the primary sources
for propagating displacement signals. If descriptors are unavailable or sparse, we
sample grid-based control nodes (GCN) on an n X n lattice; each lattice point

{91‘}?:21 in Iy is mapped to the same coordinate in I,(rfoarse).

2.2 KNN-Based Gaussian Blending for Deformation Estimation

Gaussian Primitive Initialisation After coarse alignment, each matched pair
(gif ,g") is used to initialise a Gaussian primitive centered at g; = glf . Every
node i possesses three sets of learnable parameters:

i. Position g; € R?: Refined during training to allow local anchors to shift
toward anatomically salient regions.

ii. Displacement Vector t; € R?: Encodes the local translation of node g;.
Initialized to tZ(-O) =g — glf for DCN or 0 for GCN.

iii. Radius r; € R*: Adjusts each node’s spatial influence and parametrize
r; by a learnable scalar §;, via mapping r; = Tmin + ("max — Tmin) 0(8;) + 0.1,
where o(-) is the sigmoid function. The 0.1 offset ensures r; never becomes zero,
preventing vanishing gradients.

KNN-Based Gaussian Blending To propagate displacement signals and con-
struct a smoothly varying displacement field u(x) from the sparse set of control
nodes (Fig b), we employ a KNN-based Gaussian weighting scheme that func-
tions as a message passing mechanism. Specifically, the displacement field is
computed as a weighted sum over the K-nearest control nodes. We define the
displacement at x as:

K exp (*Lx;f;“g)
u(x) = Zwi(x)ti, where w;(x) = = H;—g'||2 ) (3)
i=1 > j—1€xp (_ 2t )

and t; is the displacement vector associated with the i-th control node. The
w;(x) is a Gaussian kernel weight that decays exponentially, thus giving greater
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influence to control nodes closer to x. The denominator ensures Zfil wi(x) = 1.
Consequently, each pixel is influenced by its K nearest nodes, and each node,
in turn, receives gradient signals from those pixels during backpropagation (see
Sec.. In descriptor-based control nodes (DCN), these nodes are placed on
anatomically distinctive features (e.g., major vessels), preserving high-gradient
signals to pixel and during optimization vice versa and mitigating vanishing
gradients in homogeneous regions. Notably, by restricting on the top K nearest
nodes instead of all nodes, we reduce computational overhead while retaining
accurate local detail.

2.3 Neural Iterative Optimization

Forward Pass & Loss Function To find an optimal set of node parameters
{gi, t;, 7} ,, we adopt an iterative, gradient-based framework indexed by 7 =
1,..., Tmax. At iteration 7, we compute the displacement field u, (x) from Eq.
and warp the coarse-aligned moving image via bilinear interpolation for pixel
resampling.

Lr (%) = 1E95)(x 1w, (). (4)

m

We learn the parameters {g;,t;,r;}2¥; and optimise the displacement field
by minimising a two-term loss function:

[:7— = 1 ﬁgcc + (&%)} ‘CIICC7 (5)

where L, is global cross-correlation loss with matched control nodes, £, aligns

overall intensity patterns in Iy and L(,JT).

Backpropagation & Parameter Update As u(x) is a weighted sum over K
nearest nodes (Eq. , each node g; accumulates gradient signals from multiple
pixels during backpropagation via ag(ﬁx) — a{zlfé’;;i} — B{t;?gﬁi,n} to update
{gi,ti, i} (Fig|2 ¢ & d). If Vg, L(x) denotes the pixel-level gradient at x for

node 4, then its total gradient:

Vel = 3 wilx) Ve L(x), (6)

x€N

where w;(x) is the Gaussian blending weight. Thus, even if vessels occupy only a
small portion of the image, a subset of pixels near each node typically lies on or
around high-gradient vessel edges, ensuring that every node still receives nonzero
gradient signal for optimization and enabling robust convergence despite sparse
vascular structures.

The {g;, t;,r; } is then updated by subtracting their respective gradient terms
scaled by distinct learning rates 74,7, 7, at each iteration 7. After 7.y itera-
tions, we obtain the final displacement field ug,,) for the coarse-aligned image

to produce the fully registered result I, fnal(x) = I,(,i"a“e)(x + Uﬁnal(x)).
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3 Experiments, Results, and Discussion

3.1 Experimental Setup and Baselines

Dataset: We evaluated our approach on the FIRE dataset [9], which contains
134 retinal image pairs with 10 expert-annotated landmarks each for evaluation
at a resolution of 2912 x 2912 pixels. The dataset was previously collected and
published in accordance with institutional ethical standards and the Declaration
of Helsinki; no new human data collection was conducted for this study. The
dataset has three subgroups: 71 pairs with minimal distortion (Category S), 4
pairs with anatomical changes (A), and 49 pairs with perspective distortion (P).
Each image pair includes 10 expert-annotated landmark points for evaluation.
For all experiments, we resized images to 1024x 1024 and applied Gaussian blur
for anti-aliasing.

Baseline Methods: We benchmark GPO against two categories of methods,
with full results in Table [1} (1) descriptor-based methods for global transforma-
tion, including SuperPoint [4], R2D2 [21], RoMa [5], GeoFormer [14], and others;
and (2) learning-based deformable registration frameworks, such as GraDIRN [20],
PDD-Net [6], VoxelMorph++ [7], and RetinaRegNet [22]. For trainable meth-
ods, we used a 7:1:2 stratified train-val-test split. In qualitative comparisons, we
highlight GeoFormer against our GPO-GCN and GPO-DCN variants.

Evaluation Metrics: We used two common metrics to evaluate model per-
formance: Target Registration Error (TRE) and Area Under the Curve (AUC)
for TRE thresholds. TRE measures the Lo distance between corresponding
points in the fixed and warped moving images annotated by clinical experts,
with lower values indicating better alignment. AUC quantifies the percentage of
TRE values below error thresholds (15, 25, and 50 pixels), normalizing accumu-
lated rates to provide a comprehensive measure of registration success.

Implementation Details: The experiments were conducted in PyTorch
and optimized on an NVIDIA A100 GPU using the Adam optimizer. The node
position updates used an initial learning rate of 1, = 1.0, while both radii and
displacement vectors used 7, = 1; = 0.01, enabling rapid coarse adjustments
while preserving local fidelity. We fixed the KNN interpolation parameter to
K = 10 for all experiments. For GPO-DCN, we sampled N = 1000 keypoints
and optimized for 100 iterations; for GPO-GCN, we placed a 20 x 20 grid of
nodes and converged within 200 iterations. The loss weights in Eq. were set
to agee = 0.4 and amee = 1.0, providing balanced guidance from both keypoint
consistency and intensity similarity.

3.2 Results and Analysis

Quantitative Analysis Table [I] shows that both GPO variants substantially
outperform selected descriptor-based and learning-based methods on the FIRE
dataset. Specifically, GPO-DCN achieves the lowest TRE (2.352 px) and consis-
tently ranks highest across all AUC thresholds(0.938@25 px and 0.964@50 px).
Compared to the best-performing descriptor-based method (GeoFormer [14],
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Table 1. Quantitative comparison on the FIRE dataset. Methods are categorized
into Descriptor-based methods (left) and Learning & Iterative Optimization methods
(right). Best results are in bold, second-best are underscored.

Descriptor-based Methods Learning € Iterative Optimization Methods
AUC ¢t AUC 1

Method TRE| ————— Method TRE| ————

Q@15 @25 @50 @15 @25 @50
XFeat [19] 10.858 0.560 0.637 0.794 GraDIRN [20] 6.344 0.657 0.774 0.885
R2D2 |21] 7.926 0.553 0.701 0.850 PDD-Net [6] 5.765 0.688 0.792 0.893
LightGlue [13] 7.802 0.5750.710 0.855 VoxelMorph++ [7] 5.400 0.710 0.808 0.902
SuperPoint [4] 6.641 0.612 0.757 0.879 VR-Net [11] 4974 0.705 0.823 0.911

Glampoints [26] 6.608 0.595 0.757 0.879 RetinaRegNet [22] 2.766 0.852 0.910 0.955
SuperRetina [I5] 6.382 0.622 0.767 0.884
RoMa [5] 6.388 0.605 0.763 0.881 GPO-GCN (Ours) 2.649 0.888 0.914 0.926
GeoFormer [14] 6.201 0.625 0.770 0.887 GPO-DCN (Ours) 2.352 0.906 0.938 0.964

TRE 6.201 px) and the strongest learning-based method (RetinaRegNet [22],
TRE 2.766 px), GPO-DCN reduces alignment error by 3.8px and 0.4px, re-
spectively. These gains reflect the benefit of anatomically guided nodes and
KNN-based blending in modelling local deformations beyond homography or
uniform grids. Moreover, GPO-DCN attains higher AUC values at all thresholds
(0.906@15px vs. 0.625 for GeoFormer), indicating improved spatial precision
and robustness to outlier errors through anatomically guided node placement.

By contrast, GPO-GCN achieves slightly higher TRE (2.649 px) and lower
AUCs (0.914@25 px), but still exceeds other baselines, underscoring the benefit
of the iterative Gaussian-primitive optimization. However, its uniform-grid sam-
pling may miss vessel junctions or small-scale variations, resulting in lower AUC
compared to GPO-DCN—especially at moderate thresholds (e.g., AUCQ@25 px =
0.914). Consequently, GPO-DCN'’s descriptor-based node acquisition preserves
more fine-grained vascular structure and ensures more robust alignment.

Qualitative Analysis Fig [3| compares I,,, Iy, and registration outputs from
GeoFormer, GPO-GCN, and GPO-DCN on two challenging retinal cases. In top
row, we highlight a region at the optic disc where vessel geometry is highly
tortuous and subject to complex localized deformations. GeoFormer and GPO-
GCN struggle to preserve these fine details, leading to partial misalignment.
In contrast, GPO-DCN leverages descriptor-based control nodes for the message
passing framework to capture complex localized distortions more accurately, pre-
serving vessel continuity. The bottom row highlights shadowing artifacts that ob-
scure sections of the vasculature. Here, both GeoFormer and GPO-GCN exhibit
residual misalignment in shadowed regions, whereas GPO-DCN demonstrates
tighter correspondence of vascular edges. By iteratively refining Gaussian primi-
tives near salient features, GPO-DCN effectively compensates for local intensity
variations, resulting in sharper vessel alignment even under low contrast.
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Fixed Moving GeoFormer GPO-GCN GPO-DCN

Fig. 3. Qualitative comparison on the FIRE dataset.
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Fig. 4. Ablation study on key parameters on TRE and running time. Left: Influence
of the number of control nodes N. Middle: Effect of the number of iterations. Right:
Impact of the number of nearest neighbors K.

Ablation Studies We conducted a three-way ablation to examine how the
number of control nodes N, the number of nearest neighbors K, and the number
of optimization iterations 7 affect both accuracy and runtime (Fig.E[).

Number of Control Nodes N: Increasing IV from 300 to 1000 reduces the
median TRE from ~ 2.60 px to ~ 2.35-2.40 px but raises runtime from ~ 18s to
~ 34s. Beyond 1000 nodes, further improvements (~ 2.22-2.35px) come at the
expense of a longer runtime (~ 45s), yielding diminishing returns.

Number of Nearest Neighbors K: For K = 5, the average TRE remains
at ~ 2.60-2.65px. Increasing to K = 10 lowers it to ~ 2.40-2.45px, with a
moderate ~ 30s runtime. Although going to K = 15 or K = 20 can yield minor
accuracy gains (~ 2.35-2.38 px), runtime increases by 20-30%. Thus, K = 10
strikes the best balance between precision and efficiency.

Number of Iterations 7: With 7 = 50, the median TRE hovers around
2.55-2.60 px in ~ 15s. Doubling to 7 = 100 reduces TRE to ~ 2.40-2.45px (a
0.1-0.2 px gain) at ~ 30s. Beyond 100 iterations, further gains (< 0.05-0.07 px)
come at a steep runtime cost (~ 45s or more).

Overall, N = 1000, K = 10, and 7 = 100 achieve a median TRE of ~ 2.3-2.4 px
within ~ 30s, offering a favorable trade-off between alignment accuracy and
computational overhead.
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4 Conclusion

We introduced GPO, an iterative deformable registration framework that ad-
dresses the critical challenge of gradient signal dilution in retinal images. By
leveraging descriptor-based control nodes (or uniform-grid nodes) to blend and
propagate their local transformations via KNN-weighted Gaussian primitives,
GPO mitigates vanishing gradients in homogeneous regions while accurately
modelling localized vessel deformations. On the FIRE dataset, GPO outperforms
conventional homography-based and learning-based methods in both alignment
accuracy and robustness. Future work will explore extending GPO to multi-
modal retinal registration and incorporating multi-scale optimization strategies
for broader medical imaging applications.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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