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Abstract. Accurate polyp segmentation during colonoscopy is crucial
for the early detection and timely intervention of colorectal cancer. Re-
cently, Mamba, a State Space Model, has gained significant attention in
polyp segmentation due to its remarkable ability to model long-range
dependencies with linear computational complexity. However, Mamba-
based methods face two key challenges: (1) their fixed scanning pattern
limits the capture of dynamic spatial context, impairing the precise local-
ization of irregular polyps; (2) during the calculation process, the high-
frequency information that is crucial to local details is weakened, and the
blurred mid-frequency information becomes dominant, thereby reducing
the boundary accuracy. To overcome these limitations, we propose Poly-
Mamba, a novel framework that integrates spatial priors while enhanc-
ing high-frequency information for more accurate polyp segmentation.
Specifically, our framework introduces a Spatial-Prior Guided module,
which leverages explicit spatial priors extracted from Transformer-based
methods to counteract the local perception bias caused by Mamba’s fixed
scanning pattern. Additionally, we design a Dual-Gate Frequency En-
hancement module, which applies two Gaussian filters to generate spec-
tra with different high-frequency thresholds, and uses the difference be-
tween them as an attention map to selectively enhance high-frequency
features, thereby refining the polyp boundaries. Comprehensive experi-
ments on five widely used polyp segmentation datasets demonstrate that
PolyMamba not only surpasses existing state-of-the-art techniques but
also provides a novel frequency-domain perspective, offering new insights
into improving segmentation performance.

Keywords: Polyp Segmentation - Mamba - Spatial Prior - Frequency
Domain.
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1 Introduction

Colon polyps are abnormal tissues that grow on the inner wall of the colon.
Accurate segmentation of polyps in colonoscopy images is crucial for the early
detection and prevention of colon cancer [3,20]. Recently, a promising state-
space model, Mamba, has garnered significant attention in the field of polyp
segmentation. Unlike traditional CNN-based models [13,18], which have limited
receptive fields, and Transformer-based models [26,23,5,10|, which incur com-
putational costs that increase quadratically with image size [6,24], Mamba can
capture long-range dependencies while maintaining linear computational com-
plexity. Its derivative variants[12,31,29,33,15,32,19] have been applied to various
vision tasks, including U-Mamba [15], Segmamba [31], and VM-UNet [19]. How-
ever, to date, no study has analyzed Mamba from a frequency domain perspective
in the context of polyp segmentation.
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Fig. 1. Visualization of the limitations of the Mamba method.

We identify two main limitations in current Mamba-based polyp segmen-
tation methods: 1) As shown in Fig. 1(a) and (b), the fixed spatial scanning
pattern restricts the perceptual range, which may lead to errors in polyp local-
ization, particularly in complex scenarios. 2) As illustrated in Fig. 1(c), during
the Mamba calculation process, high-frequency components (ranging from 322 to
352), which are critical for capturing fine local details, gradually diminish, while
blurred mid-frequency components (ranging from 31 to 321) increase. This ulti-
mately compromises the accuracy of the segmentation.

To address these limitations, we propose the PolyMamba framework, which
consists of two key components: the Spatial Prior Guidance (SG) module and
the Dual-Gated Frequency Enhancement (DFE) module. This framework not
only uses spatial priors to expand the perceptual range but also enhances high-
frequency features from a frequency domain perspective to achieve accurate
polyp segmentation. Specifically, the SG module integrates explicit spatial priors,
extracted using a Transformer-based approach, to mitigate the local perception
bias introduced by Mamba’s fixed scanning pattern. Meanwhile, the DFE mod-
ule applies two Gaussian filters to generate spectra with distinct high-frequency
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thresholds. The difference between these spectra is used as an attention map
to enhance high-frequency features, effectively mitigating the impact of blurred
mid-frequency components and ultimately refining the polyp boundary. In sum-
mary, our contributions are threefold:
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Fig. 2. Overview of the proposed PolyMamba, which consists of (a) PVT Backbone (b)
Spatial-Prior Guided Module, and (c) Dual-Gated Frequency Enhancement Module.

1 Building on the observation that Mamba may suffer from local perception
bias due to its scanning order and that it weakens high-frequency components
while enhancing mid-frequency components during computation, our proposed
PolyMamba framework achieves accurate polyp segmentation by integrating
spatial priors and enhancing high-frequency features.

2 We introduced the SG and DFE modules to address the limitations of pure
Mamba. The SG module incorporates explicit spatial priors to alleviate the
local perception bias caused by the scanning order, while the DFE module
enhances high-frequency information to refine the polyp boundaries. Together,
these modules improve the model’s ability to recognize polyps of various shapes
from both spatial and frequency domain perspectives.

3 Extensive quantitative and qualitative experiments on five public colonoscopy
image datasets show that our model outperforms most state-of-the-art meth-
ods in accurate polyp detection, highlighting its superior performance.

2 Method

2.1 Overall Architecture

The architecture of the proposed PolyMamba is sketched in Fig. 2. Given a
colonoscopy image I € REXWX3 e employ the Pyramid Vision Transformer
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(PVT)[27,28] encoder network as the backbone to extract explicit spatial-prior
features F; € Rzﬂ%x%xcﬂ where C; € {512,320,128,64} and i € {1,2,3,4}.
To mitigate the local perception bias in pure Mamba caused by the fixed scanning
order, Fy, Fy, and Fj are fed into the three Spatial-Prior Guided (SG) modules
in the encoder as spatial-prior attention maps. These maps guide the encoder to
expand its perception range and progressively learn high-level semantic informa-
tion of polyps across multiple scales. Note that the first stage of the encoder is a
convolutional layer, which captures rich high-frequency object details. Mirroring
the encoder structure, the decoder comprises three Dual-Gated Frequency En-
hancement (DFE) modules. The DFE module first applies a Fourier transform to
the lower-layer features, then performs an inverse Fourier transform on the spec-
tral difference obtained from two Gaussian filters to generate a high-frequency
attention map. This map is subsequently fused with the output of the SG module
to enhance the high-frequency components. After passing through the decoder,
a final projection layer upsamples the features to restore their original height
and width, and adjusts the number of channels to 1 to match the segmentation
target. Further details of these modules are provided in the following sections.

2.2 Spatial-Prior Guided Module

In this module, we leverage the spatial prior features output by the PVT back-
bone as a guided attention map, directing the Mamba module to progressively
learn high-level semantics across multiple perception ranges. We believe that
the Transformer provides explicit spatial priors, while Mamba enables implicit
global reasoning. Together, these two models are synergistic and complementary
in capturing the semantics of polyps. As shown in Fig. 2 (b) and (d), each SG
module comprises L VSS [33,1,7] blocks, each containing a 2D-Selective-Scan
(SS2D) module, a linear layer, and a residual connection. To extract initial se-
mantic information, the input feature fc is first passed through an L-layer VSS
stack following a fixed scanning pattern. It is then further refined by maximum
pooling (Max). The corresponding Transformer feature fr in PVT, which pro-
vides a richer perceptual space, is used to supply the prior for f;:

fv = Max(VSSxr(fe)) ® fr (1)

Then, fas is nonlinearly enhanced through a 1 x 1 convolution (Ciyx1), ReLU
activation (Re), and a residual connection to obtain the final enhanced convolu-
tion feature fg, which also serves as the input feature fco for the next SG module
in the encoder:

fs = far + Cix1(Re(Cixi1(far)) (2)

By leveraging the SG module, PolyMamba extracts robust polyp semantic
features from the rich perceptual space, allowing the DFE module to further
refine these features from the frequency domain perspective, enhancing their
discriminative power for more accurate recognition.
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2.3 Dual-Gated Frequency Enhancement Module

Based on our observations during the Mamba calculation process, we found that
high-frequency information gradually diminishes, while mid-frequency informa-
tion is enhanced. Since high-frequency information is crucial for capturing local
details essential for accurate polyp segmentation, the goal of this module is to
boost the useful high-frequency components in the output of the SG module,
where the middle-frequency components that include camouflaged background
details are dominant. Specifically, the feature f, from the low-layer is first trans-
formed using a fast Fourier transform (FFT) and then processed with two Gaus-
sian filters to generate two spectra with distinct high-frequency boundaries. The
difference between these spectra is then restored to spatial features through an
inverse fast Fourier transform (IFFT), which serve as attention maps, guiding
the output fg, from the SG module to enhance high-frequency information. This
ultimately yields the refined feature fg This process can be expressed as fol-
lows:

i1t

fsi+1 :I((Ga _Gb)®F(fL))®Up(fSI) (3)

Where F, I, and Up represent the FFT, IFFT, and upsampling operations respec-
tively; G, and G}, are the two distinct Gaussian filters; ® denotes the Hadamard
product. The average values of both Gaussian filters are set to the width and
height of the polyp image.

2.4 Loss Function

To optimize our model, we consider the weighted intersection-over-union (IoU)
loss and weighted binary cross-entropy (BCE) loss. Unlike the standard BCE
loss, which assigns equal importance to all pixels, the weighted IoU loss and
weighted BCE loss assign higher weights to more challenging pixels. This allows
the model to constrain the prediction map from both the global structure (object-
level) and local details (pixel-level) perspectives. Assuming that the prediction
and ground truth are denoted as P and G, respectively, our total loss function
can be expressed as:

Etotal = ‘C{;)OU (Pa G) + ﬁuE)?CE(Pv G) (4)

where LYo 5(-) and LY, ;(-) are the weighted IoU loss and weighted BCE loss.

3 Experiments and Results

Datasets and Metrics. To evaluate our proposed approach, we conducted ex-
tensive experiments on five widely used polyp segmentation datasets, including:
Kvasir-SEG [11], ColonDB [22], Endoscene [25], ClinicDB [2], and ETIS [21].
The training set consists of 900 images from Kvasir-SEG and 550 images from
ClinicDB. The test sets comprise 100 images from Kvasir-SEG, 62 images from
CVC-ClincDB, 380 images from CVC-ColonDB, 60 images from Endoscene, and
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196 images from ETIS. Six metrics are used to evaluate the performance of Poly-
Mamba: mean Dice score (mDice) [17], mean IoU score (mIoU), mean absolute
error (MAE), weighted F-measure (Fg) [16], max E-measure (E7'**) [8], and
S-measure (Sy) [4].

Table 1. Comparison of experimental results across the five polyp datasets, with best
results indicated in bold. A total of five models were compared: U-Net [18], PraNet [9],
SANet [30], Polyp-PVT [5], and VM-UNet [19].

Datasets

Methods

mDice

mloU

L)

Sa

max
Eg

MAE

ClinicDB

UNet(MICCAT'15)
PraNet(MICCAT’20)
SANet(MICCAT21)
Polyp-PVT(AIR’23)
VM-UNet (arxir’24)
PolyMamba(Ours)

0.823
0.899
0.916
0.937
0.926
0.940

0.755
0.849
0.859
0.889
0.871
0.894

0.811
0.896
0.909
0.936
0.927
0.940

0.889
0.936
0.939
0.949
0.933
0.953

0.954
0.979
0.976
0.989
0.971
0.993

0.019
0.009
0.012
0.006
0.009
0.006

Kvasir

UNet(MICCAT15)
PraNet(MICCAT’20)
SANet(MICCAI'21)
Polyp-PVT(AIR’23)
VM-UNet(arxir’24)
PolyMamba(Ours)

0.818
0.898
0.904
0.917
0.913
0.919

0.746
0.840
0.847
0.864
0.856
0.866

0.794
0.885
0.892
0.911
0.902
0.911

0.858
0.915
0.915
0.925
0.918
0.924

0.893
0.948
0.953
0.962
0.958
0.967

0.055
0.030
0.028
0.023
0.027
0.023

ETIS

UNet(MICCAT'15)
PraNet(MICCATI’20)
SANet(MICCAI'21)
Polyp-PVT(AIR’23)
VM-UNet (arxir’24)
PolyMamba(Ours)

0.398
0.628
0.750
0.787
0.761
0.829

0.335
0.567
0.654
0.706
0.692
0.753

0.366
0.600
0.685
0.750
0.743
0.794

0.684
0.794
0.849
0.871
0.869
0.902

0.740
0.841
0.897
0.910
0.900
0.934

0.036
0.031
0.015
0.013
0.015
0.012

ColonDB

UNet(MICCAT'15)
PraNet(MICCATI’20)
SANet(MICCAT'21)
Polyp-PVT(AIR’23)
VM-UNet (arxir’24)
PolyMamba(Ours)

0.512
0.712
0.753
0.808
0.798
0.815

0.444
0.640
0.670
0.727
0.712
0.738

0.498
0.699
0.726
0.795
0.782
0.800

0.712
0.820
0.837
0.865
0.861
0.871

0.776
0.872
0.878
0.919
0.904
0.921

0.061
0.043
0.043
0.031
0.036
0.029

EndoScene

UNet(MICCAT'15)
PraNet(MICCAI'20)
SANet(MICCAT'21)
Polyp-PVT(AIR'23)
VM-UNet (arxir’24)
PolyMamba(Ours)

0.710
0.871
0.888
0.900
0.886
0.904

0.627
0.797
0.815
0.833
0.818
0.843

0.684
0.843
0.859
0.884
0.849
0.888

0.843
0.925
0.928
0.935
0.921
0.945

0.875
0.972
0.972
0.981
0.968
0.985

0.022
0.010
0.008
0.007
0.009
0.007
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Implementation Details. We implement our method using PyTorch and con-
duct experiments on a single NVIDIA RTX 3090 GPU. The AdamW optimizer
[14] is used for training over 100 epochs, with a learning rate of le-4, a weight
decay of le-4 , and a batch size of 8. Data augmentation techniques, including
random rotation, random flipping, and color jitter, are applied to enhance the
diversity of the training data, thereby improving the model’s robustness and
generalization.

cvc-m m‘m‘nm

ANERNREN

Image GT PraNet SANet Polyp-PVT  VM-UNet Ours

Fig. 3. Qualitative results of different methods.

Learning Ability and Generalization Ability. We conducted two experi-
ments on two seen datasets, Kvasir and CVC-ClinicDB, to evaluate the learning
ability of our model. To assess the generalization performance, we tested our
model on three unseen datasets from different medical centers: ETIS, ColonDB,
and EndoScene. As shown in Tab. 1 and Fig. 3, PolyMamba outperforms existing
methods on both the seen and unseen datasets, demonstrating the model’s supe-
rior ability to learn high-level semantic information for accurate polyp segmen-
tation and its capacity to maintain exceptional performance even in unfamiliar
and complex scenarios.

Table 2. Ablation studies on CVC-ClinicDB (seen) and ETIS (unseen) datasets.

Variation Prior Gauss ClinicDB ETIS
mDice mloU mDice mloU
G - - 0.916 0.861 0.786 0.705
(2 - 0.919 0.872 0.797 0.721
€ v - 0.926 0.888 0.812 0.733
Qurs v 0.940 0.894 0.829 0.753
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Fig. 4. Visualization results of ablation experiments

Ablation Study. In this section, we conduct ablation experiments to evaluate
the effectiveness of the proposed modules: the spatial priors extracted via the
Transformer method in the SG module, and the Gaussian filter used to enhance
high-frequency components in the DFE module. These experiments aim to verify
whether the proposed modules can address the limitations of current Mamba-
based polyp segmentation methods. Additionally, we investigate the sensitivity
of our model to the number of VSS Blocks. As shown in Tab. 2, the results
clearly demonstrate that each module contributes significantly to the overall
performance improvement, with their combination achieving the best results.
Fig. 4(a) shows that using too many VSS Blocks can lead to overfitting. This
also suggests that if Mamba’s local deviation is too strong, it may not be fully
corrected even with the introduction of the prior. Through the visual ablation
experiment in Fig. 4(b), we confirm that: 1) the introduction of spatial priors
effectively enhances the model’s spatial perception, aiding in the precise localiza-
tion of polyps; 2) enhancing high-frequency information improves the accuracy
of polyp boundary refinement, eliminates false positives, and enhances overall
segmentation performance.

4 Conclusion

Building on the fixed spatial scanning mode of Mamba and the observed phenom-
ena of high-frequency attenuation and middle-frequency amplification during
the Mamba calculation process, we propose a novel polyp segmentation method,
PolyMamba. This approach addresses two critical challenges: first, it mitigates
the local perception bias caused by the scanning order in Mamba, and second,
it enhances high-frequency information from the frequency domain to refine the
polyp boundary, offering a fresh perspective for achieving accurate polyp seg-
mentation. The SG module enhances the perception capabilities of the Mamba
module by incorporating explicit spatial priors extracted via the Transformer,
which helps in accurately locating polyps and extracting high-level semantic fea-
tures. Additionally, the DFE module utilizes the spectral difference between two
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distinct Gaussian filters as an attention map to enhance high-frequency infor-
mation, progressively refining the polyp boundary. Experiments on five widely
used polyp datasets demonstrate the effectiveness and robustness of PolyMamba.
The results show that PolyMamba significantly supports the diagnosis of colon
polyps, improving both the accuracy and automation of the diagnostic process.
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