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Abstract. Interactive segmentation in medical imaging remains chal-
lenged by progressive loss of crucial interaction cues (click responsiveness,
boundary fidelity) in deep networks. To address this limitation, we pro-
pose Interactive Kolmogorov-Arnold Network with adaptive modulation
(IKAN), a unified framework that synergistically preserves interaction
signals through spline-activated basis functions while enabling iterative
anatomical refinement. The architecture achieves enhanced diagnostic
fidelity by integrating three core components: hierarchical multi-scale
feature extraction through Hierarchical Inception and Channel Atten-
tion Module (HICAM), dual-branch adaptive probability modulation for
backbone/side-feature fusion, and click density-guided prediction sharp-
ening. By dynamically correlating user-provided clicks with multi-modal
data patterns, our method resolves ambiguous boundaries in complex
clinical scenarios. Evaluated across OCT, BUSI, and AISD datasets, our
method demonstrates enhanced segmentation accuracy in complex clini-
cal scenarios, outperforming state-of-the-art approaches through system-
atic preservation and amplification of diagnostic interaction cues. The
code is available online.
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ulation - KAN - Carotid Artery OCT

1 Introduction

Interactive segmentation plays a crucial role in medical image analysis, espe-
cially in clinical settings where accurate delineation of anatomical structures is
essential[I8]. Unlike fully automated segmentation, which relies only on image
data, interactive segmentation combines human cues (e.g., clicks or scribbles)
and coarse segmentation from the previous iteration[I9T53]. This dual guid-
ance improves segmentation accuracy and allows for iterative refinement based
on expert input, increasing clinical reliability.
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However, current interactive segmentation methods have limitations. Many
approaches simply add or concatenate the image, click map, and previous proba-
bility map, assuming each modality contributes equally[I4J15]. This naive fusion
ignores the distinct roles of each input: user cues provide localized, high-priority
signals, while previous segmentation results offer useful context. As the network
deepens, these cues can weaken, leading to suboptimal performance. Addition-
ally, the iterative nature of interactive segmentation, where new inputs refine
previous results, is often not fully realized. Many methods fail to properly merge
new user inputs with historical probability maps, resulting in a refinement pro-
cess that doesn’t fully capture the contributions of the cues [12]. This can un-
dermine the precision and robustness needed for clinical applications.

Large models tailored for medical tasks, such as SAMMed2D[4] and MedSAM|I3],
have been recently introduced. While these models have achieved notable progress
in certain areas, they may not fully adapt to domain-specific knowledge and fea-
tures, leading to decreased performance in specialized tasks.

This study presents a novel interactive segmentation framework with three
key advancements: 1) a KAN framework with fusion modules that leverages
multi-source inputs and iterative refinements; 2) a hierarchical multi-scale fea-
ture extraction module with channel attention to prioritize informative cues; 3)
a dual-branch fusion strategy with adaptive probability modulation, combining
backbone and side-branch features while refining pixel values near user clicks for
precise guidance.

2 Methodology

KAN’s mathematically transparent function composition and enhanced nonlin-
ear modeling capabilities provide inherent interpretability for capturing complex
anatomical patterns in medical imaging. Building on UKAN [I1], we develop an
enhanced backbone through three architectural innovations: wavelet convolu-
tions integrated into KAN blocks enable multi-frequency feature learning while
preserving interpretability; a Multi-Scale Cross-Attention (MSCA) module [2]
bridges CNN blocks and KAN layers via spatial-channel feature recalibration;
and adaptive fusion strategies prioritize error-prone regions through coordinated
preprocessing and modulation. The overall architecture and interactive loop of
IKAN is depicted in Figure [T}

The framework operates through three sequential phases (Fig. : 1) Hi-
erarchical Preprocessing: Input tensor X = [Ximage,Xcoord,Xprev] undergoes
multi-scale feature extraction via HICAM’s channel-attentive spatial pyramid.
2) Modulated Feature Extraction: The enhanced UKAN backbone processes fea-
tures while a parallel ResNet branch derives modulation signals from current
clicks and previous probability maps. 3) Adaptive Decoding: Features fused by
the attentional feature fusion (AFF) [5] in bottleneck layers are decoded through
residual connections preserving spatial fidelity, culminating in 1x1 convolution
and softmax classification.
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Fig. 1. Network architecture and Interactive Loop of IKAN

The IKAN framework establishes an iterative refinement loop through se-
quential interaction rounds denoted by ¢. In each round ¢, the system modulates
the previous probability map Xf);a{, with newly added user clicks p* to gener-
fn;}iprev, computes the current probability map Xérev
through network processing and propagates Xérev as the initial probability map
for round ¢ + 1.

The framework’s closed-loop mechanism drives progressive refinement of prob-
ability maps by integrating HICAM’s hierarchical context aggregation, MSCA-
driven CNN/KAN synergy, and AFF-guided fusion of UKAN features with
ResNet-modulated click adjustments—collectively enabling precise segmentation
through iterative updates.

Our loss function combines a weighted SoftloU [§] with iteration-specific
scaling iterloss [I6] to adaptively balance training objectives, where T' denotes
the total iterations and W; follows Wy 1 > W, to progressively prioritize fine-
grained predictions. Each iteration loss is defined as:

ate enhanced guidance X

T
Z(gt [OXXO) wpixcl)
L,=1— ) L otal = WL 1
. S (max(3.7) © o) Total tzzl tLt (1)

with §; € [0, 1] as the predicted probability tensor at iteration ¢, y € {—1,0,1} as
the ground truth (where —1 indicates ignored regions), and wpixel = I(y # —1)
masking valid pixels.
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The Hierarchical Inception and Channel Attention Module (HICAM) pro-
cesses multi-source inputs through a cascaded architecture to enhance interac-
tive segmentation performance. As illustrated in Fig. [2| the module operates in
three sequential stages.

The input sources, including the raw image Ximage, user interaction coordi-
nates Xcoord, and prior probability map Xprev, are concatenated into tensor X,
which then undergoes channel-wise attention modulation (CAM) via squeeze-
and-excitation operations adaptively reweighted to emphasize the importance of
each input type[7] . The processed features are then processed through a multi-
scale inception structure with varying convolutional kernel sizes[I7], capturing
spatial patterns efficiently. Finally, a second CAM layer refines the multi-scale
features obtained from the inception module, enabling the model to better focus
on deeper, more informative cues. The complete transformation can be formally
expressed as:

Z = CAMgpa1(Inc(CAMy,i(X))) (2)

HICAM enhances feature focus while filtering out irrelevant information,
improving segmentation accuracy. Its integration of inception-based multi-scale
extraction and adaptive channel weighting makes it a critical component in in-
teractive segmentation networks.

2.2 Enhanced Probability Map Modulation

We improve the modulation mechanism of Lee et al. [I0] by addressing two
limitations: (1) ineffective correction for large initial prediction errors and (2)
over-expanded modulation radius. Our enhanced approach introduces three com-
ponents:

1) Adaptive Modulation Radius: The radius R is constrained within [Rumin, Rmax]:

1
R = min (Rma)U max (Rmirn - min ||’LL - ’UH)) (3>
2 veo
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Fig. 3. Visualization of modulation effects for (a) positive clicks (enhancement) and
(b) negative clicks (suppression). The color gradient indicates probability values.

where u represents the current click position, O = {v1,va,...} is the set of all
previous clicks of the type opposite to u. This ensures balanced spatial context
by considering distances to all relevant opposite-type clicks.

2) Distance-based Modulation Mask: A linear mask M (z) with intensity «:

M(z) = {0‘ (1-Lz0), Je-ul<r "

0, otherwise

where x represents the spatial coordinates of an arbitrary pixel in the image.
3) Refined Probability Update: The modulated probability becomes:

P ()7 + M(x), l(u)=1Az—ul| <R
P_q1(z) = P_1(x)" — M(z), Il(u)=0A|z—ul|<R (5)
Pi_q(x), otherwise

where P;,_1(x) is the previous prediction probability at location x, I[(u) € {0,1} is
the click label (1 for positive/foreground click, 0 for negative/background click),
~v > 11is the adaptive gamma factor that sharpens probabilities for positive clicks
and smooths them for negative clicks.

As shown in Figure 3] this design enforces P(x) = 1 at positive click centers
and P(x) = 0 at negative click centers, with smooth distance-based transitions.
The adaptive radius prevents excessive modulation scope while maintaining spa-
tial relationships to existing clicks.

The enhanced modulation mechanism offers three primary advancements
compared to the original framework: 1) rigorous boundary enforcement at user-
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Fig. 4. Results of IKAN, from top to bottom are carotid artery OCT, BUSI, AISD.

specified click locations through precise probability assignment (1.0 for posi-
tive clicks, 0.0 for negative clicks), eliminating regional ambiguity; 2) improved
probability transition smoothness via linear distance masking, outperforming
gamma correction approaches; 3) adaptive radius constraints that prevent over-
modulation in sparse interaction scenarios, effectively preserving spatial relation-
ships between local refinements and global context. These optimizations collec-
tively strengthen iterative segmentation robustness, especially when addressing
substantial initial prediction inaccuracies or spatially distributed user inputs.

2.3 Dual-Branch Interactive Fusion

User-provided positive/negative clicks iteratively guide prediction refinement in
interactive segmentation. Our dual-branch architecture (Figure synergizes
global context and localized correction. The backbone branch processes con-
catenated inputs X = [Ximage, Xcoord, Xprev] t0 maintain multi-scale anatomical
context. Simultaneously, the ResNet side branch [6] enhances spatial modula-
tion of error-prone regions using X = [Ximage, Xcoord; Xmodprev] Where Xmodprev
encodes previous predictions adjusted by current user clicks.

The extracted features F}ackbone and Fiqe are fused via attentional feature
fusion(AFF) [5], where A generates spatial attention weights o through channel-
wise averaging and convolution operations:

Frused = @+ Fhackbone + (1 - O‘) “Fide, o= U(A([Fbackbonea Fside])) (6)

Our dual-branch fusion architecture synergizes global context preservation
with user-guided refinement to enhance interactive segmentation accuracy. The
backbone branch processes the original image, coordinate maps, and prior pre-
dictions to capture multi-scale contextual features, while the spatially modu-
lated side branch selectively enhances regions marked by user annotations. This
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Fig. 5. loU improvement with increasing number of points.

spatial modulation explicitly prioritizes error-prone regions, thereby improving
segmentation precision. An attention-based fusion mechanism dynamically bal-
ances these complementary streams—preserving anatomical coherence through
global context while incorporating real-time user corrections—ensuring robust
performance across diverse interaction patterns. The modular architecture fa-
cilitates flexible customization of interaction handling and feature integration
strategies.

3 Experiments and Results

Datasets and Pre-processing: The following image sets including our own
dataset and publicly available datasets are used to evaluate the performance
of our approaches: (1) Private carotid artery OCT dataset (1,142 training and
453 test samples), which consists of OCT image pullbacks from 36 patients with
fibrous cap lesions. (2) BUSI breast ultrasound dataset (452 training and 75 test)
which collected in 2018 covering female patients aged 25 to 75 years[1]. (3) AISD
acute ischemic stroke dataset (2,945 training and 841 test)[9] which contains 397
Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke.

Hyper-parameters Settings: The data augmentation techniques employed
during training include random resizing, horizontal flipping, padding, random
cropping, and adjustments to brightness and contrast. We trained on an NVIDIA
RTX 4080 GPU with 16 GB of memory. We use the Adam optimizer with an
initial learning rate of 5 x 1074, B, = 0.9, B2 = 0.999, ¢ = 1 x 108 and
MultiStepLR scheduler reducing rates by 10x at epochs over 220 with early
stopping employed to prevent overfitting. The batch size is set to 4, and the
input images are resized to 256 x 256. Extensive experiments on the validation set
determined the optimal iteration loss weight W; € {1,2,3} and the modulated
radius [Rumin, Rmax] is [6, 25].
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Evaluation Metrics: We adopt rigorous clinical standards using Number
of Clicks (NoC) at three thresholds: NoC@80, NoC@85, and NoC@90. Our click-
based method is grounded on NoBRS[I5], which optimizes image segmentation
results through user interactions. Simulated clicks are generated until reaching
target IoU or max 20 clicks.

Results: We conducted a comparative evaluation of our approach with sev-
eral state-of-the-art methods, including RITM-hrnet18s[I5], FocalClick-hrnet18s[3],
MFP-plainvit[I0], CFR-ICL[16], SAMMed2D[4] and SAMMed2D-ft which is ob-
tained by fine-tuning the SAMMed2D on the same datasets. These evaluations
were performed across both publicly available datasets (BUST and AISD) and our
own carotid artery OCT dataset. As shown in Table [1, IKAN achieves higher
accuracy than all baseline methods. The framework requires minimal user in-
teractions to attain competitive segmentation quality (Figure [5)). The ablation
studies confirm the critical contributions of both HICAM and adaptive mask
fusion modules outperforming the versions with individual components removed
with all modules enabled. These components collectively enhance segmentation
precision in complex medical imaging scenarios, as evidenced by the performance
improvements in Table 2] and visual results in Figure [

Table 1. Comparison of segmentation performance

Method OCT BUSI AISD
NoC@ 80 8 90 80 8 90 80 85 90

RITM-hrnet18s[I5] 4.73 7.54 12.95 2.41 3.41 6.45 9.70 13.46 17.68
FocalClick-hrnet18s[3] 3.98 6.16 11.25 1.92 3.13 6.01 13.4 15.99 18.59

MFP-plainvit[10] 5.59 8.32 13.85 2.52 3.87 7.55 9.36 13.50 17.66
CFR-ICLII6] 5.90 8.62 14.38 2.60 3.61 7.09 9.92 13.93 17.84
SAMMed2D-ft[4] 5.82 9.81 16.55 2.89 3.77 6.75 14.71 17.33 19.27
SAMMed2D[4] 14.99 17.6 19.75 3.41 5.07 7.84 16.11 17.92 19.28
IK ANFroposed 3.56 5.98 12.35 1.57 2.29 4.59 9.24 13.26 17.41

Table 2. Ablation Study Results

KAN HICAM Fusion Modulation AFF NoC@80 NoC@85 NoC@90

v X X X X 4.00 6.40 12.39
v v X X X 3.80 6.14 11.9
v v v X X 3.83 6.25 12.41
v v v v X 3.79 6.14 12.51
X v v v v 4.01 6.43 12.56
v v v v v 3.56 5.98 12.35
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4 Discussion and Conclusion

This study introduces IKAN (Interactive KAN framework), a clinically viable
medical image segmentation system built upon an enhanced UKAN backbone.
Designed to address complex anatomical segmentation challenges, IKAN achieves
high precision and robustness across diverse medical imaging scenarios. The
framework integrates multiple innovative components, such as HICAM and an
adaptive dual-branch fusion mechanism with dynamic modulation, enabling ef-
fective adaptation to various imaging modalities and clinical tasks. Particularly
effective in demanding applications like carotid artery segmentation in OCT
imaging and demonstrates superior performance in resource-constrained environ-
ments where high-quality annotated data are limited. Quantitative evaluations
across three benchmark datasets reveal that IKAN enhances input utilization
efficiency compared to conventional approaches while maintaining critical inter-
active cues throughout network processing.

In conclusion, IKAN provides an efficient solution for interactive segmenta-
tion, improving performance in clinically challenging, low-annotation scenarios.
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