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Abstract. Cone-beam computed tomography (CBCT) is an essential
imaging modality for adaptive radiotherapy, enabling the positioning
and real-time verification of anatomical changes. However, CBCT images
suffer from artifacts and lack the accurate Hounsfield unit (HU) calibra-
tion necessary for dose computation. Additionally, CBCT’s limited field
of view (FOV) further complicates its direct application for replanning.
To address these limitations, we propose a novel framework leveraging
diffusion models to synthesize a synthetic CT (sCT) from CBCT while
inpainting the extended FOV using the original planning CT (pCT). Our
method integrates with any CBCT-to-CT diffusion framework without
degrading its performance, ensuring accurate HU values and comprehen-
sive anatomical coverage for dose computation without requiring new
CT acquisitions. Quantitative and qualitative evaluations demonstrate
that our approach preserves the baseline CBCT-to-CT translation qual-
ity while effectively extending the FOV, offering a streamlined and effec-
tive solution for adaptive radiotherapy workflows.

Keywords: Medical Image Processing · Radiotherapy Workflow Opti-
mization · Diffusion Models · Image Synthesis · Inpainting.

1 Introduction

Accurate dose computation in radiotherapy requires high-quality CT images
with calibrated Hounsfield units (HU) reflecting electron density (ED). However,
cone-beam CT (CBCT), used for patient setup and verification, suffers from
artifacts, poor HU calibration, and a restricted field of view (FOV), making
direct dose computation unreliable. As a result, additional CT scans are needed
when significant anatomical changes occur, delaying treatment and increasing
patient burden, particularly in online adaptive radiotherapy, where rapid imaging
updates are essential.
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Fig. 1. sCT Generation with Extended FOV. A diffusion model is trained with
partial conditioning on the CBCT. During inference, it extends the FOV by inpainting
with a deformably registered pCT, ensuring a smooth and anatomically valid transition.

To overcome these limitations, we propose a novel diffusion-based framework
for generating high-quality synthetic CTs (sCTs) from CBCT. Our approach ad-
dresses the FOV limitation through an inpainting-based diffusion process that
seamlessly integrates information from the original planning CT (pCT). By con-
ditioning sCT generation on CBCT input while incorporating pCT data, our
method produces anatomically consistent volumes that leverage the strengths of
both modalities—preserving the accurate HU representation of the pCT while
capturing the most up-to-date anatomical details from the CBCT.

Our framework eliminates the need for new CT acquisitions, enabling dose
computation on extended-FOV sCTs while maintaining the performance of ex-
isting CBCT-to-CT diffusion models. This advancement streamlines adaptive
radiotherapy workflows, reducing delays and minimizing unnecessary radiation
exposure. Quantitative results confirm that partial conditioning preserves dif-
fusion model performance, while visual assessments demonstrate anatomically
plausible inpainting, positioning our approach as a practical and flexible solution
for modern adaptive radiotherapy.

2 Related work

2.1 Diffusion Models for Conditional Generation

Diffusion models [8, 21], have garnered significant attention for their exceptional
generative capabilities. Unlike GANs, they operate within a probabilistic frame-
work, ensuring stable training dynamics and producing high-quality outputs.
In medical imaging, these models have demonstrated success in tasks such as
image-to-image translation [26, 15], and volumetric synthesis [17], outperform-
ing GANs-based methods.
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2.2 Synthetic CT Generation in Radiotherapy

sCT generation from CBCT has become a key area of research in radiother-
apy, aimed at enhancing dose computation accuracy and streamlining treatment
planning. Traditional approaches, such as intensity mapping, often struggle to
generalize across varying anatomical regions and acquisition settings, due to the
artifacts and variability inherent in CBCT.

To overcome these limitations, generative adversarial networks (GANs) [7]
and cycle-consistent GANs (CycleGAN) [25] have been proposed [2, 3, 11, 12, 14,
18, 23, 24]. While these models address domain translation, their inherent insta-
bility during training has hindered their widespread adoption in clinical settings.
Recent advances in conditional diffusion models have brought a new wave of re-
search to the CBCT-to-CT image translation task [6, 13, 16]. These models im-
proved performance in handling CBCT artifacts and domain variability, thereby
offering a more reliable solution for sCT generation in radiotherapy.

2.3 Field-of-View Expansion

Expanding the FOV is critical for dose computation in radiotherapy. Interpola-
tion and registration-based methods [9, 20] have been used to reconstruct missing
regions but often lack anatomical plausibility, particularly in cases with sig-
nificant deformations. CNN-based methods [4, 5, 10] improve reconstruction by
leveraging CBCT-domain priors. However, they still have difficulty incorporating
pCT priors effectively. Recent advances in diffusion-based inpainting [22] offer a
unified approach, seamlessly integrating generation and inpainting.

3 Method

3.1 Background

Diffusion models Diffusion models [8, 21] are a class of generative models
that leverage a forward and reverse stochastic process. The forward process
progressively adds Gaussian noise to the data x0, resulting in increasingly noisy
representations x1, x2, . . . , xT . This process is defined as a Markov chain:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt is the schedule controlling the noise added at each step.
The reverse process reconstructs the original data x0 by denoising the cor-

rupted representations. A neural network ϵθ(xt, t) predicts the noise added at
each step, enabling the reconstruction of xt−1 from xt:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), Σθ(xt, t)I) (2)

where µθ(xt, t) and Σθ(xt, t) are derived from the predicted noise ϵθ(xt, t).
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The training objective minimizes the discrepancy between the predicted and
true noise, using a simplified loss function:

Lsimple = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(3)

Diffusion models are known for their stability during training and ability to
generate high-quality outputs. Moreover, the flexibility of the reverse process
enables conditional generation by incorporating auxiliary information, making
them suitable for structured tasks.

Latent Diffusion Models Latent diffusion models [19] (LDMs) operate in a
compressed latent space, mapped from the original data space x via an encoder-
decoder pair. The forward diffusion process is applied to the latent variables z,
reducing computational demands while retaining generative capabilities. LDMs
improve efficiency, allowing diffusion models to handle high-resolution inputs
and complex tasks.

Latent Space with 3D VAE In this work, we employ a 3D VAE to encode
volumetric data into a compressed latent space, enhancing the efficiency of dif-
fusion by operating directly in 3D while preserving anatomical structure. Unlike
2D VAEs, a 3D VAE maintains spatial continuity along the z-axis, crucial for
ensuring smooth transitions across slices and improving overall 3D coherence in
the generated sCTs.

3.2 CBCT-to-CT Field of View Extension

Our approach leverages a latent diffusion framework as outlined above. To effec-
tively integrate pCT information for FOV extension, we propose modifying the
diffusion training with partial conditioning and adapting the inference process
by incorporating a diffusion-based inpainting approach that leverages pCT data.
Before inpainting, CBCT and pCT are aligned via deformable registration. Fig. 1
provides an overview. Importantly, these modifications seamlessly integrate into
existing diffusion frameworks without performance loss.

Partial Conditioning A CBCT-conditioned diffusion model alone cannot en-
sure seamless FOV extension. It synthesizes sCT in CBCT-conditioned regions
but depends on pCT for missing areas. Deformable registration helps but of-
ten causes boundary discontinuities due to misalignments or texture differences
(Fig. 2). Similarly, diffusion-based inpainting [22] struggles with smooth tran-
sitions when trained on fully conditioned CT-CBCT pairs (Fig. 3), as it only
learns to generate CT in CBCT-covered regions, failing in empty areas (Fig. 4).

To overcome this, we introduce partial conditioning, training the model with
CBCT inputs that are only partially present while keeping the CT target fully
available. This allows the model to generate sCT conditioned on CBCT while
ensuring smooth and anatomically valid transitions into unconditioned regions
(Fig. 3).
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Fig. 2. Discontinuities arising from a naive inpainting, consisting of a deformable
registration of the pCT on the generated sCT to fill in the missing parts. Those are
not present in our approach as shown in 7
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Fig. 3. Partial Conditioning training The model is trained with inputs where the
CBCT can be only partially present, whereas the CT target is fully there. By learning to
fill the gaps in the condition, the model is now able to generate anatomically consistent
sCT between the CBCT-conditioned sCT and the pCT.

Field of View Extension To extend the FOV, we modify the inference process
of the diffusion model using an inpainting-based approach that incorporates
pCT information. To ensure a smooth and anatomically consistent transition
between the CBCT-conditioned sCT and the pCT, we introduce two key ideas:
(1) performing inpainting directly in the latent space of a 3D VAE to improve
efficiency and 3D coherence, and (2) defining an inpainting region via a dilation
margin, which extends the CBCT mask by a specified number of voxels (Fig. 5).
In addition, we introduce a context region surrounding the inpainting area, called
the context margin. Given these regions, the denoising process follows:

zcontext
t−1 = N (

√
αtz

pCT, (1− αt)I) (4a)

zinpaint
t−1 = N (µθ(zt, t), Σ(zt, t)) (4b)

zt−1 = m⊙ zcontext
t−1 + (1−m)⊙ zinpaint

t−1 (4c)

where m is a binary mask that distinguishes context and inpainting regions,
zcontext
t−1 is a noisy version of the known pCT region, zinpaint

t−1 is the predicted
value for the unknown region, zpCT is the latent encoding of the pCT, and
αt =

∏t
s=1(1− βs) is the total noise variance.

The existence of a dilation margin allows the diffusion model to generate
a seamless transition between the CBCT-conditioned sCT and the pCT, even
when misaligned. Its size must be chosen to balance anatomical consistency
and computational efficiency: a small margin risks discontinuities, while a large



6 Q. Spinat et al.

Fig. 4. FOV extension with a diffusion model trained without partial condi-
tioning for different dilation margins. Artifacts are visible at the border of the CBCT
conditioning, even when dilation margin is zero (left image). Omitting partial condi-
tioning during training leads to poor transitions beyond the CBCT FOV.

margin reduces the influence of conditioning and increases computational cost
(Fig. 6).
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Fig. 5. Dilation and context margins. The inpainting area comprises the CBCT-
conditioned region and a surrounding dilation margin, which defines the unconditioned
region where a smooth transition is generated. Additionally, the context margin spec-
ifies the region where pCT information is incorporated during the diffusion process.

The context region plays a crucial role in anchoring the planning CT infor-
mation. As shown in Eq. 4, we use it to incorporate a noised version of the
planning CT directly into the denoising diffusion process. Given the significant
difference in FOV between CBCT and pCT, inpainting the full pCT would be
computationally prohibitive. To mitigate this, we restrict the diffusion process to
the inpainting and context regions, leaving the remaining pCT unchanged. The
context margin size is critical: a zero context margin can lead to discontinuity
artifacts, while an excessively large context margin increases computational cost.

4 Experimental Results

4.1 Datasets and Hardware

Hardware Trainings and inferences were conducted on Nvidia RTX 3080Ti
GPUs with 24GB. Most trainings used 4 GPUs with Distributed Data Parallel.
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Fig. 6. Conditioned inpainting for different values of the sampling and con-
text margins. Too small margins leads to discontinuities. CBCT borders in red, di-
lation margin borders in green, context margin borders in blue.

Models We employ a 3D latent diffusion architecture, with a 3D VAE (SDXL-
inspired) and a 3D U-Net denoiser (depth 3, with attention at the bottleneck),
using magnitude-preserving layers. The VAE (∼250M params) uses L1, KL-
divergence, spatial-gradient, adversarial, and perceptual losses, on thousands of
CT and CBCT scans. Volumes were cropped to 128×128×32 patches, intensity
clamped to [-1024, 3000] HU, and rescaled to [-1, 1]. The compression rate was
[8,8,2] along [x,y,z]. The CBCT-to-CT U-Net diffusion model (∼300M params)
was trained on 4,298 head-and-neck and 875 breast scan pairs, preprocessed sim-
ilarly, with random cropping to 256×256×64. All data are private, anonymized
CBCT and CT scans from multiple centers.

Inference For memory reason, inference is done patchwise for the VAE encod-
ing, decoding, and diffusion model sampling, using multidiffusion [1] for patch
aggregation. Processing a typical 512 × 512 × 128 volume required ∼5GB of
memory and ∼1 minute.

4.2 Evaluation and Results

Evaluation Setup Quantitative evaluation of the extended FOV is challenging
due to the absence of ground truth. CBCT images have a restricted FOV, and
while the pCT provides an approximation, it does not reflect anatomical changes
between acquisitions. Additionally, patient-specific deformations such as organ
motion, weight loss, and tumor progression cause misalignments between pCT
and CBCT, particularly in soft tissues, making quantitative metrics unreliable.
Standard image similarity metrics like structural similarity index (SSIM) and
peak signal-to-noise ratio (PSNR) fail to assess inpainting quality and transi-
tion smoothness adequately. A more nuanced approach is needed to evaluate
anatomical consistency and clinical usability.



8 Q. Spinat et al.

Qualitative Evaluation Given these challenges, we prioritize visual evaluation
to assess anatomical plausibility, seamless blending at transition boundaries, and
overall realism of the generated sCTs. Qualitative comparisons offer a more reli-
able means of determining whether the FOV extension produces clinically usable
images. As shown in Fig. 7, our method achieves a seamless valid transition be-
tween sCT and pCT, outperforming a naïve pCT-to-sCT registration approach.

Fig. 7. Visual evaluation. Left to right: pCT, CBCT, Our method, naive method.

Quantitative Validation of Partial Conditioning While direct evaluation
of FOV extension remains difficult, we verify that partial conditioning does not
degrade diffusion model performance in CBCT-conditioned regions, proving that
our method enables FOV extension without degrading the model’s base CBCT-
to-CT performance (Tab. 1). We stress that our objective is not to outperform
specific CBCT-to-CT models, but to enable FOV extension without degrad-
ing performance within the original FOV This ensures that our method can
be seamlessly integrated into existing CBCT-to-CT diffusion frameworks while
preserving synthesis accuracy.

Expert Review Our method has been approved for clinical use by collaborating
radiologists, following evaluation based on dose metrics and visual assessments.

5 Conclusion

We introduced a diffusion-based framework for sCT generation with extended
FOV from CBCT, leveraging pCT for inpainting. Our method preserves CBCT-
to-CT translation quality while seamlessly integrating FOV extension, address-
ing CBCT artifacts and limited coverage. By incorporating partial conditioning
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Config. MAE ↓ SSIM ↑ PSNR↑ Axial ↓ Sagittal ↓ Organs ↑
FID FID Av. Dice

Classical 50,48 0,946 35,00 16,35 11,06 0,916
Partial Cond. 50,73 0,947 34,78 16,46 11,13 0,921

Table 1. Performance with vs. without partial conditioning on CBCT-to-CT
Breast translation task. Organ Dice is averaged over 9 organs. Metrics are computed
within the CBCT mask, excluding FOV augmentation from metrics. Partial condition-
ing maintains the same performance within CBCT region, proving that our method
enables FOV extension without degrading the model’s base CBCT-to-CT performance.

and diffusion-based inpainting, we ensure a smooth transition between CBCT-
conditioned and inpainted regions.

Given the lack of ground truth in the extended FOV, quantitative evalu-
ation remains challenging. Instead, our qualitative analysis demonstrates that
the method produces high-fidelity sCTs with realistic anatomical continuity and
smooth transitions. Radiologist grading is planned for future work

Rather than fine-tuning an existing CBCT-to-CT model, we retrained a dif-
fusion model from scratch with partial conditioning to demonstrate general ap-
plicability. However, fine-tuning a pretrained model with our approach could
significantly reduce training time while maintaining performance. Future work
will explore this strategy to enhance efficiency and accessibility. Additionally,
we will focus on clinical validation in real-world adaptive radiotherapy settings,
further advancing automated FOV extension and its impact on patient care.

Disclosure of Interests. All authors were employees of Therapanacea at the time
of this study and received compensation as part of their employment. As such, they
declare financial interest in the company.
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