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Abstract. The application of ultrahigh definition endoscopy systems in
minimally invasive surgeries has become increasingly widespread. How-
ever, their high resolution results in a reduced depth of field (DOF), mak-
ing it difficult to achieve clear imaging across the entire frame. Unlike
improvements in optical structures, we address this issue using a deep
learning-based multi-focus image fusion (MFIF) approach. Traditional
MFIF methods are less effective in endoscopic scenarios due to their inad-
equate design for extracting information from complex organ structures.
To address these limitations, this work proposes a two-streamed cascaded
encoder-decoder network that incorporates multi-scale feature extraction
and fusion mechanisms validated in medical image segmentation. The
network includes novel multi-scale fusion module with cross-axial atten-
tion that hierarchically integrates features using attention-guided weights
and hybrid operations, effectively preserving intra-domain textures while
modeling cross-domain dependencies. The framework is rigorously val-
idated using novel real-world endoscopic datasets collected from imag-
ing experimental platform. The experimental results demonstrate that
the proposed method outperforms traditional approaches in benchmark
tests. Code available at: https://github.com/luoyu5023/CTMFusion.

Keywords: Multi-focus image fusion · Cascaded Network · Multi-scale
feature.

1 Introduction

Endoscopes serve as pivotal diagnostic instruments in contemporary medicine,
enabling direct visualization of target organs and tissues through real-time mor-
phological characterization. This imaging modality provides clinicians with crit-
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ical pathological evidence, thus facilitating rapid and accurate diagnostic eval-
uations. Minimally invasive endoscopic surgery, recognized for its procedural
precision and reduced iatrogenic trauma, is considered a critical advance in next-
generation clinical interventions [3].

However, due to the inherent limitations of optical imaging, the pursuit of
high resolution and magnification in endoscopy inevitably results in reduced
DOF [23]. Although autofocus technology has widespread implementation, sub-
stantial depth variations across anatomical structures cannot be simultaneously
brought into sharp focus during single-frame acquisition. Unlike physical im-
provement in optical imaging systems, the simultaneous capture and fusion of
images from multiple imaging planes present a feasible method for extending the
DOF in endoscopic imaging.

Traditional methods [7][9][10] typically rely on handcrafted feature extrac-
tion, which frequently results in edge blurring and detail loss due to limited
representational capacity. In recent years, deep learning-based approaches have
emerged as the predominant methodology, evolving from CNNs [24] to architec-
tures that incorporate Swin Transformers [8]. A primary focus of these advances
lies in optimizing the extraction of both local and long-range features to enhance
fusion performance. In particular, FusionDiff [6], as a diffusion model tailored
for MFF tasks, demonstrates the potential of using limited training samples to
approximate real-data distributions and generate high-quality fused output.

Previous studies, whether they employ CNNs or Transformers, predomi-
nantly decouple feature extraction and feature fusion into sequential stages. This
paradigm allocates computational resources disproportionately to the feature ex-
traction module, thereby delaying the integration of complementary information.
Unsupervised ZMFF [4] utilizes two U-Net-based hourglass-structured networks
but exhibits insufficient cross-level feature interaction, failing to take advantage
of high-level semantic guidance to refine low-level feature learning.

By uniformly distributing computational resources across cascaded encoding-
decoding stages and iteratively executing feature fusion at each stage [20], our
network enables mutual guidance between preliminary features and fused out-
puts. This architecture facilitates a deeper exploration of multi-focus image in-
terdependencies, where early fusion results inform subsequent feature extraction
and refinement. It improves hierarchical feature utilization and the model’s abil-
ity to capture latent correlations between focal planes.

The scarcity of task-specific training data remains a critical bottleneck that
limits algorithmic precision. Although general-purpose fusion networks (e.g.,
those supporting MRI/CT fusion and multi-exposure fusion) have been devel-
oped, empirical evidence consistently shows that algorithms tailored to specific
scenarios or tasks outperform generic solutions [22]. This observation further
underscores that achieving optimal performance in endoscopic imaging requires
both explicitly adapted algorithm designs for endoscopic modalities and the in-
corporation of real endoscopic datasets to address domain-specific challenges.

In this paper, our contributions are as follows. 1) We establish a two-streamed
and cascaded encoding-decoding network, achieving DOF expansion through the
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generation of decision maps and MFIF. 2) We construct multi-scale feature inter-
domain and cross-domain fusion modules, systematically integrating multi-input
multi-scale features. 3) The method achieves state-of-the-art image fusion per-
formance on EVP-MFI(a real laparoscopic dataset), with minimal blur artifacts
and exceptional detail and texture preservation.

2 Methods

An overview of the proposed framework is illustrated in Fig. 1.The optical system
simultaneously inputs far-focus and near-focus image of the same size. RGB
inputs are first converted into the YCbCr color space. Next, the Y (luminance)
channel is employed as the input of the fusion model since the structural details
and intensity information are mainly concentrated in this channel. After initial
feature extraction via the Stem module, multi-scale feature encoding-decoding
and feature fusion are performed in the cascade network(num_stages = 3).

Fig. 1. The framework of the DOF expansion system.
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The input image with a spatial size of H × W , either from a far-focus or
near-focus perspective, is processed through the stem module to extract high-
resolution features of size H

4 × W
4 . Each stem module incorporates two sequen-

tially arranged 3×3 convolutional layers (each configured with a stride of 2) for
early visual processing.

Sec.2.1 describes the cascade encoder and decoder framework, Sec.2.2 details
the cross-domain and inter-feature fusion of multi-scale features, and Sec.2.3
outlines the loss function composition.

2.1 Cascaded Network

This study uses SegNeXt [2] as the multi-scale feature encoder. Unlike Transformer-
based models, SegNeXt introduces an efficient attention mechanism and employs
cheaper and larger kernel convolutions. The encoder extracts features from the
backbone network at three hierarchical levels with spatial resolutions of H

4 × W
4 ,

H
8 × W

8 , and H
16 × W

16 , respectively, which are subsequently channeled into the
decoder for further processing.

The Decoder module performs a multi-scale feature aggregation through a
down-top pathway with channel reduction and layer normalization. Low-resolution
features are integrated with high-resolution features through unsample opera-
tions and element-wise addition. The final output retains the original spatial
resolution, taking guidance from the current stage’s fusion result, and serves as
the input to the encoder in the next stage.

Under the rigorous requirements of minimally invasive surgical applications,
this study adopts the decision map generation paradigm to preserve complete
image detail integrity while circumventing erroneous texture synthesis [16]. To
eliminate subjective bias, the proposed network architecture ensures spatial con-
tinuity of in-focus regions within input images through direct mask operations
between the generated decision map and source images, bypassing conventional
post-processing steps.

Thus, the output from the last layer undergoes upsampling, convolution, and
sigmoid activation, producing the decision map and then directly generating the
final fused image combined with origin input. This study employs CARAFE
[15] for upsampling, which effectively aggregates contextual information within
a large receptive field while being lightweight and fast to compute.

2.2 Feature fusion module

To establish long-range dependencies across domains, the Cross SwinTrans-
former module is used to integrate features of the same scale from two image
streams. For the query of one image stream, the value and key of the other im-
age stream are used to perform an attention-guided combination of cross-domain
information, along with residual connections to preserve information within the
domain.

A hierarchical hybrid fusion strategy is implemented: In shallow layers, chan-
nel concatenation preserves spatial details from dual-stream input, maintaining
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texture fidelity while enhancing local feature representation for subtle biologi-
cal structures. Deeper layers adopt max fusion to process high-level semantics
(e.g. organ contours), where competitive selection enhances salient features and
suppresses blur artifacts, aligning with model lightweighting requirements [19].
We further incorporate multi-scale cross-axial attention features [13], proven ef-
fective in medical segmentation, to model long-range tissue dependencies and
mitigate segmentation errors at ambiguous boundaries.

The fused features are ultimately generated at H
4 × W

4 resolution through
feature concatenation followed by depth-wise and point-wise convolutions.

Fig. 2. Feature Fusion Module. The architecture processes multi-scale features from
near/far-focus inputs, where C denotes channel-wise concatenation and M represents
channel-wise max pooling operation.

2.3 Loss Function

For training stage , the total loss Ltotal is:

Ltotal = λ1Lint + λ2Ltext + λ3Lssim, (1)

Lssim = 0.5× (1− SSIM(F,A)) + 0.5× (1− SSIM(F,B)) (2)

Ltext =
1

HW
∥ |∇F | −max(|∇A|, |∇B|) ∥1 (3)

Lint =
1

HW
∥ F − 0.5× (A+B) ∥1 (4)

where F represents the fused image, A / B denotes the near or far focus image
with the size of H×W . ∥·∥1 denotes the l1−norm and ∇ indicates Sobel gradient
operator.

The loss function consists of three components: 1) Intensity Loss (Lint), which
guides the fusion model to capture appropriate intensity information based on
the global intensity of the source images. 2) Texture loss (Ltext), designed to
preserve texture details from source images, uses a maximum selection strategy
to aggregate these details effectively. 3) SSIM Loss (Lssim), which constrains the
structural similarity between the fused image and the source images.
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3 Experiments

3.1 Datasets and Evaluation Metrics

The datasets employed in this research are summarized in Table. 1. We first pre-
train model using MFF-WHU [21] and NYD [14], which synthesize multi-focus
images based on depth information from wild images.

Table 1. Dataset settings.

Purpose Dataset Number Image Size

Pre-training MFI-WHU [21] 120 Not fixed
NYD [14] 100 600×440

Fine-tuning SCARED-Depth 110 1280×1024
Test EVP-MFI 115 960×540

To enhance the network perception of endoscopic images, the model is fine-
tuned on medical data after pre-training on natural images. We processed the
SCARED dataset [1], which contains a large number of intraoperative laparo-
scopic images, using Depth Anything V2 [18] and Otsu binarization to generate
depth masks. These masks, combined with Gaussian noise applied to the original
images, are used to create laparoscopic multi-focus image pairs. Ultimately, 110
pairs were selected for fine-tuning.

Addressing the current lack of practical multi-focus medical imaging datasets
in clinical research, we developed a multi-focus experimental platform to sys-
tematically acquire images as test dataset named EVP-MFI, with the schematic
diagram illustrated in Fig.1. We constructed a simulated abdominal cavity en-
vironment using fresh ex vivo porcine organs (liver, stomach, and intestines),
subsequently acquiring 115 paired multi-focus images across multiple poses.

The effectiveness of MFIF was evaluated using six quantitative metrics: Fea-
ture Mutual Information (FMI), Peak Signal-to-Noise Ratio (PSNR), Nonlinear
Correlation Information Entropy (QNICB), Edge-Based Similarity Measurement
(QAB/F), SSIM-based fusion quality metric (QY) for structural consistency ver-
ification, and Human visual perception(QCB).Higher metrics indicate that the
fusion image is better [22].

3.2 Implementation details

The batch size is set to 12 by default, with 1000 training epoches in total. At each
step, images from the training set are randomly cropped into 128 × 128 patches,
and data augmentation is applied by flipping to enhance image diversity. The
Adam optimizer is used to update the network weights with an initial learning
rate of 2e-4, while MultiStepLR controls the decay. The hyperparameters for the
loss function are empirically set as λ1 = 20, λ2 = 20, λ3 = 50.
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The proposed network was implemented in PyTorch and training was carried
out for 1000 epochs on four Nvidia A100 GPUs, which took approximately 5
hours to complete.

3.3 Quantitative Comparison with SOTA

Table 2 presents a quantitative comparison between our method and multiple
MFIF approaches, where the baseline methods were implemented by their best
model according to official codes. Our method achieves significant improvements
over previous work. Although marginally underperforming generative networks
in PSNR, it still exceeds previous decision map-based models. The superior FMI

Table 2. Quantitative results on EVP-MFI dataset. Bold and Underline show the
best and second-best results, respectively.

Methods FMI QAB/F PSNR QY QNICB QCB

DSIFT [10] 0.8302 0.3376 33.81 0.5630 0.8121 0.6671
NSCT [9] 0.8352 0.4170 33.36 0.6686 0.8114 0.7038
GFF [7] 0.8320 0.3641 33.15 0.6548 0.8120 0.6816

IFCNN [24] 0.8291 0.4033 33.30 0.6689 0.8111 0.6753
SESF [11] 0.8320 0.3641 33.15 0.6548 0.8120 0.6816
DRPL [5] 0.8439 0.4917 33.25 0.8336 0.8136 0.6617

U2Fusion [17] 0.8369 0.3961 33.05 0.6344 0.8125 0.6717
DeFusion [8] 0.8291 0.3262 33.56 0.5428 0.8119 0.6594

SwinFusion [12] 0.8444 0.4792 33.89 0.8110 0.8135 0.6941
SwinMFF [16] 0.8359 0.4429 31.33 0.7518 0.8115 0.6549

ZMFF [4] 0.8317 0.4163 32.89 0.6764 0.8104 0.6735
FusionDiff [6] 0.8320 0.3769 30.19 0.6585 0.8118 0.6842

ours 0.8638 0.5926 33.36 0.9780 0.8252 0.7193
ours(fine-tuned) 0.8672 0.5977 33.34 0.9848 0.8279 0.7228

scores(+0.019) indicate that the fused images preserve more comprehensive fea-
ture information from source images, validating the enhanced capability of our
feature fusion module. The higher QAB/F(+0.101) and QY(+0.167) metrics re-
veal that our cascaded network architecture effectively extracts deep-level edge
and structural information from source images. Notably, the performance ex-
hibits a marginal improvement through network fine-tuning, whereas networks
without prior medical image training may underperform compared to traditional
methods.

3.4 Qualitative comparison with SOTA

Fig. 3 highlights the qualitative visualization superiority of our framework over
existing deep learning-based baselines in EVP-MFI. Our method preserves intri-
cate textural details from far-focused regions (see blue insets) while maintaining
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Fig. 3. Qualitative results of EVP-MFI. From left to right, top to bottom: near/far-
focus image, the fused results and difference maps. The difference maps represent the
difference between the near-focus image and fused results, manifesting as obvious tex-
ture details in the upper region.

sharper focus transition boundaries (red boxed area). The proposed framework
generates fewer blurring artifacts at the fusion boundaries while circumvent-
ing the luminance distortion inherent in the FusionDiff method. These results
support the superior applicability of our model in clinical settings.

3.5 Ablation Study

To further investigate the impact of the proposed fusion module and the num-
ber of cascade stages on performance, ablation experiments are performed in
Table. 3. The ablation of either the Decoder or hybrid strategy in the fusion
module leads to a consistent degradation of performance metrics. Performing
feature fusion at an earlier stage effectively assists the network in learning deeper
features(+0.004, +0.029, +0.053 in FMI, QAB/F and QY). Cross-Swin proves its
strong capability in extracting edge and structural information across diverse
domains. And we validate that three stages yield the optimal balance in perfor-
mance.

4 Conclusion

This study proposes a high-resolution DOF expansion method for endoscopic
systems, which effectively fuses multi-focus endoscopic images. Our method out-
performs existing networks on a novel real-world endoscopic test set(EVP-MFI),
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Table 3. Ablation experiments results with EVP-MFI. Bolded values indicate the
best performance.(w/o stage1-2 indicates single stage, and so forth)

Configurations FMI QAB/F QY

w/o stage1-2 0.8613 0.5832 0.9629
w/o stage1 0.8616 0.5914 0.9727

w/o Decoder 0.8620 0.5763 0.9716
w/o fusion from stage1-2 0.8599 0.5635 0.9250

w/o Cross-Swin 0.8640 0.5790 0.9559
hybrid strategy → cat 0.8602 0.5821 0.9443
CARAFE→bilinear 0.8621 0.5813 0.9727

ours 0.8638 0.5926 0.9780

with gains of 0.019, 0.101 and 0.167 in FMI, QAB/F and QY. The cascaded net-
work architecture developed in this research enables a more efficient learning of
complementary information and the deep features of the image pairs. In future
work, we plan to extend the application domain of this fusion framework to other
clinical endoscopic systems.
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