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Abstract. Accurate tracking of abdominal lymph nodes (LN) across
follow-up computed tomography (CT) scans is crucial for colorectal can-
cer staging and treatment response evaluation. However, establishing re-
liable LN correspondences remains underexplored due to challenges in-
cluding scale variations, low resolution, difficulty distinguishing nodes
from adjacent structures, inability to handle tissue deformation, and
dynamic visibility. To address these challenges, we propose an asym-
metric matching framework that strikes a balance between enhancing
LN specificity and contextual correlations. For specificity, we achieve
cross-dimensional feature consistency and generate discriminative LN
features via self-supervised learning on orthogonal 2D projections of 3D
node volumes. For correlation, we develop a graph model capturing lym-
phatic topology within scans, reinforced by temporal contrastive learning
that encourages consistency between matched node pairs across CT. To
balance specificity and correlation, we propose a multi-module archi-
tecture that integrates volumetric LN features with projection embed-
dings through attention-based fusion, enabling confidence-calibrated sim-
ilarity assessment across temporal scans. Experimental results demon-
strate that our solution provides reliable lymph node correspondence for
clinical follow-up and disease monitoring. Code is available at https:
//github.com/maoyij/Asymmetric-Matching.

Keywords: Lymph node matching - Abdominal CT scans - Spatiotem-
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1 Introduction

Lymph node (LN) metastasis critically determines colorectal cancer prognosis
and therapeutic strategies [1,2], and longitudinal abdominal LN monitoring in
serial computed tomography (CT) scaus is essential for detecting metastatic pro-
gression during postoperative surveillance [3, 4]. However, anatomical complexity
and temporal morphological variations of LNs hinder precise cross-scan corre-
lation, requiring over 15 minutes per case. Retrospective analyses indicate that
22.2-56.8% of recurrence cases experience postponed treatment adjustments [5]
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due to undetected LN progression. Such diagnostic delays pose a risk to clinical
outcomes by exceeding the optimal intervention windows, thereby underscor-
ing the necessity for standardized automated monitoring systems to enhance
matching accuracy and longitudinal consistency.

The clinical challenges in longitudinal LN monitoring originate from distinc-
tive complexities in abdominal lymph node data. Metastatic nodes frequently
demonstrate non-rigid deformations, with diameters that can reach 10-fold across
sequential scans. Simultaneously, temporal scans further reveal dynamic shifts,
where nodes new/disappear unpredictably, creating spurious matches. Further-
more, anatomical ambiguity in the abdomen further compounds these challenges.
All these characteristics indicate that maintaining both the specificity between
different LNs and the correlation within the same LN is very difficult. This
causes problems both clinically and technically, leading to issues with asymmet-
ric matching.

Existing research on abdominal LN primarily focuses on detection [6-8], seg-
mentation [9], and metastasis prediction [10]. However, automatic abdominal
LN matching remains underdeveloped, and current methods for monitoring tis-
sues face challenges in addressing the asymmetric matching problem. The ex-
isting approaches for monitoring tissues typically adopt two main paradigms:
image registration and universal lesion monitoring. Conventional registration
techniques, including affine transformations [11] and deformable models [12],
demonstrate efficacy in aligning major anatomical landmarks, but are inad-
equate for tracking small and morphologically labile targets. While universal
lesion tracking systems have achieved clinical utility for relatively stable struc-
tures such as lung nodules [13], liver lesions [14], and brain anatomy [15], their
performance degrades significantly when applied to LNs exhibiting non-rigid
deformations within complex anatomical environments. Recent deep learning
trackers that employ similarity metrics [16], multi-scale feature fusion [17], and
cross-attention have shown potential for stationary lesions but fail to address the
difficulty of tracking small targets and handling LNs’ new/disappear. Even ad-
vanced self-supervised paradigms [18-20] that refine voxel-wise feature learning
remain constrained by the inherent heterogeneity and non-rigid deformations of
LNs, particularly when distinguishing LNs from adjacent vascular structures.

To address the asymmetric matching problem, we propose a framework that
integrates spatial and temporal information. The main contributions of our work
are as follows: (1) Multilevel Spatial-Temporal Matching from global to local to
address small target matching in complex anatomical environments; (2) Self-
Supervised Feature Extraction harnessing 2D projections to amplify LN-specific
features obscured by anatomical ambiguity; (3) Balanced Feature Integration
employing adaptive fusion to reconcile specificity and contextual correlations.

2 Method

Given a series of longitudinal 3D CT scans {I3, I5, ..., IT}, each scan It contains
nr lymph node regions of interest (ROIs), denoted as L = {I¥ 13, ... 1T},

Y'n



Asymmetric Matching in Abdominal Lymph Nodes of Follow-up CT Scans 3

SE

fi }r‘,).k,
Module

— 3Dr
SEAG | = e [Tk, ﬁ
H | TiA

L : :

a9 | [0 [Tk SCB Lgcp| fine-tune - | '

P[5, | Module b

Nodes |
2 similarity T;

— 3D
SEAG || mmm [0

i shared
i L
S weight

St fk
Module L Matching Results

—_—
Correlation
Extraction Module
a. Overview
2D («
i f,lv!!zﬂ T, T I ® i
w VRN B ) o
= | ResNet-151 |=»> N e |\ 4 &
| i ! wpdate | 52
Y / H r———. w,
\ ° v edge weights
l View Filter 1 g [ * e weig )
2D L Spatial Enhanced Adaptive
‘Temporal Enhanced Strategy (TE) Graph Neural Network (SEAG)

c. Correlation Extraction Module J

-

1 Push Pull

i

ity Extraction Module (SE)

Fig. 1. (a) Overview of the asymmetric matching framework. (b) SE module. (c) Cor-
relation Extraction module. (d) SCB module.

where lg represents the k-th lymph node in scan I7. The asymmetric matching
problem aims to establish a mapping M Iry—Ir, Lr, — Lr; between two scans

Ir, and I7; (1 <T; < T; <T). The mapping My, 1z, s constructed to: (1)

identify persistent nodes through one-to-one correspondences M(lz}) = l{;; (2)
classify unmatched ROIs as new/disappear.

As shown in Fig. 1, the asymmetric matching framework consists of three
main components: specificity extraction module, correlation extraction module,
and specificity-correlation balancing module. The specificity extraction module
extracts distinctive features from individual LNs to differentiate between similar
nodes. The correlation extraction module captures relationships among LNs and
temporal correlations of the same LN undergoing non-rigid deformations. The
specificity-correlation balancing module reconciles these features and fine-tunes
the final results.

2.1 Specificity Extraction Module (SE)

The SE module focuses on extracting discriminative features from each individ-
ual lymph node through multi-view representation learning. For every node, nine
2D views (three orthogonal, six diagonal/oblique)[21] are extracted from its 3D
cube by projecting the 3D volume along different directions. Each 2D view is
encoded into a 128-dimensional vector using a shared ResNet-34 encoder, while
the 3D volume is processed by a ResNet-151 backbone to extract 3D features.
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The 2D-3D pairs from the same node are treated as positives, while 2D views
from other nodes serve as negatives for contrastive loss.
For the ki-th lymph node at time points T, we represent its features as
%?Chp € R'?8 for the p-th 2D projection and f%ﬁ)ﬁ € R'?8 for its 3D features.
The 2D-3D contrastive loss function is:
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where Sk131) - Sl.m(nykl’ 7k13P)/T’ Skikaq = Slm(fT’kl’fT,kzxq)/T’ sim(-)
computes cosine similarity, and 7 is the temperature parameter.

Lge=— log

(1)

2.2 Correlation Extraction Module

The correlation extraction module captures temporal and spatial correlations
among lymph nodes through two complementary components: the TE extracts
longitudinal correlations between the same lymph node across inter-CT scans,
while the SEAG captures horizontal correlations by leveraging contextual rela-
tionships among lymph nodes within intra-CT scans.

Temporal Enhanced Strategy (TE) TE extracts longitudinal correlations
by learning consistent representations of the same lymph node across different
temporal CT scans. It introduces a contrastive loss based on cross-CT node
pairs to encourage temporal consistency and feature discrimination. TE directly
leverages information from both CT scans to learn core features that remain con-
sistent despite non-rigid deformations, but does not alter the feature extraction
or aggregation process. The temporal contrastive loss is formulated as:

1 & etk
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where si° = SIm(f7 ks f70 8, ) /T Sy ky = SI(F7 1y [ k) /T [y, and
f%fkl represent the 3D features of the ki-th lymph node at time points 77 and
T, respectively, and N is the number of matched lymph node pairs.

Spatial Enhanced Adaptive Graph Neural Network (SEAG) SEAG cap-
tures horizontal correlations by modeling the relational context among lymph
nodes within a single CT scan using a two-layer graph neural network archi-
tecture. FEach CT is represented as a fully connected graph, where nodes are
lymph nodes represented by 128-dimensional features f%?ﬁ extracted from the
SE module and the initial edge weights are determined by coordinate differences
between nodes, wg, k, = exp(—||ck, — Ck,||)- SEAG leverages contextual relation-
ships among lymph nodes within the same CT scan to update node features,
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capturing anatomical proximity and structural patterns to address non-rigid de-
formations.

The first layer updates node features through a two-step process: (1) Neighbor
Aggregation: For each lymph node, it first collects information from all neigh-
boring nodes by computing a weighted sum g, = >, Wk, k, hg;). (2) Attention-

-
based Update: It then computes self-attention weights oy, = softmax (%)
to determine the importance of the aggregated information, and finally updates

)

the node representation with h,(cl1 = hgi) + ak, gk, , where @ is a learnable pa-

rameter matrix.

Before the second layer, the edge weights are dynamically updated based on
Irg) =i 13 :
— k2 2 where o is

a learnable parameter. The second layer takes the features h(!) and w,(:l) Ky 8S

the new node representations h(1) as w( ) = exp(—
(o8

input to generate the final node representations A(?), which involves computing
DENE 2 1) (1 1
=3, wi byt and then AfY) = ReLU(A) + Zk2 o gl
After processing both CT scans we compute the similarity matrix S €
RN1XNz hetween all node pairs using cosine similarity. The SEAG module is
optimized using binary cross-entropy loss.

2.3 Specificity-Correlation Balancing Module (SCB)

The SCB module enables cross-CT matching through cross-attention mecha-
nism, performing multi-view fusion and classification to balance specificity and
correlation between lymph node pairs. The strategy operates through three in-
tegrated components to learn spatiotemporal similarity: discriminative view se-
lection, cross-modal feature fusion, and threshold similarity evaluation.

For discriminative view selection, a learnable gate network computes im-
portance scores for each of the nine 2D views. The top-2 views with high-
est scores are selected to reduce computational complexity while maintaining
discriminative power. For each lymph node pair (k1,k2) from different time
points (7;,7}), we consider their 2D features fT 1o f%fk%m and 3D features

fT“kl, f%’?kz extracted from the SE module. Since each lymph node has one

3D feature and two selected 2D features, we generate nine combined features
(P17p2)
f —

through all possible feature combinations between the two nodes:

Fuse( 75, plyf kQ’pZ,fT“klvaj,kz), where p1,ps € {0,1,2} represent tho fea-
ture types (0 for 3D 1,2 for selected 2D projections) for nodes k1 and ks respec-
tively. Each fused feature undergoes nonlinear similarity assessment through a

threshold scoring mechanism:
Sépi;cpz) (Wflgpllépz) +0)-1 (orm) 7 (3)

1,k2 1,k2 [O‘(Wfkl,k2 +b)>0.5]

where the indicator function I suppresses low-confidence matches by nullify-
ing scores below 0.5. The final similarity metric aggregates evidence across all

3 3 : . ofinal __ (p1,p2) final
nine feature combinations: 533 = 5 Zpl 0 sz —o5p 1ot Nodes with 533 <
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0.5 are classified as new/disappear instances. The model is optimized using bi-
nary cross-entropy loss.

2.4 Training Strategy and Inference Formulation

The model is trained end-to-end in a joint manner. At each training step, the
input data is first processed by the SE module to extract features, which are
then fed into the SEAG and SCB modules. The total loss combines multiple
components:

»Ctotal = ['se + Ete + »Cseag + »Cscb~ (4)

During inference, all modules contribute to the final matching results. The
SE module performs feature extraction for each lymph node. The SEAG module
computes pairwise similarities between lymph nodes across CT scans and applies
the Hungarian algorithm for initial matching. The SCB module independently
computes its own similarity scores and uses these scores to correct the initial
matching assignments from SEAG, particularly for identifying new/disappear
instances and resolving mismatches.

3 Experiments

3.1 Experimental Settings

Dataset Our study utilized a combined dataset from two cohorts, totaling 167
patients. The first cohort included 120 colorectal cancer patients (83 with 3
scans, 37 with 2 scans), providing 1,339 matched node pairs and 101 unmatched
nodes. The second cohort consisted of 47 patients with recurrence (2 scans each,
acquired within 6 months post-surgery), contributing an additional 356 matched
pairs and 55 unmatched nodes. Negative nodes were defined by size consistency
of less than 10 mm across scans, while positive nodes exhibited more typical
non-rigid deformations, with a maximum observed size of 49.62 mm. To evaluate
performance, we employed a five-fold cross-validation scheme on the entire 167-
patient dataset.

Implementation Details All scans were standardized to 0.7 x 0.7 X 2 mm
voxel spacing, with nodes cropped as 24 x 24 x 24 volumes (50% expanded
radii around radiologist-annotated centers). The model was implemented in Py-
Torch and trained on 2 NVIDIA 4090 GPUs using Adam optimizer (lr=0.0001,
batch=4) for 100 epochs. Training took approximately 10 hours, with early stop-
ping applied when validation loss plateaued for 20 epochs.

Evaluation Metrics In addition to standard classification metrics Precision
(Pre) and Recall (Rec), the metrics involved in this paper include:
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— New/Disappear Lymph Node Rate (NLR /DLR): Specifically designed
to evaluate asymmetric matching challenges, this metric measures the accu-
racy of identifying nodes that new /disappear between scans: Rate = wlgigjltl,
where |Scorrect| and | Sg¢| are the correctly identified and ground-truth counts
for new/disappear nodes respectively.

— Center Point Matching (CPM) Accuracy: The proportion of correctly
matched nodes where the distance between the predicted center (pred) and
ground-truth center (gt) is within a tolerance, defined as: ||pred — gt|l2 <
min(10 mm, radius).

— Mean Euclidean Distance (MED): The average Euclidean distance be-
tween the centers of predicted and ground-truth matched nodes, calculated

N
as % 21:1 lpred; — gt;|2-

3.2 Ablation Study Results and Discussion

The ablation study in Tab. 1 demonstrates progressive performance improve-
ments as each module is added. The baseline model achieves only 75.68% pre-
cision, highlighting the fundamental challenges of asymmetric matching. The
non-monotonic trends in NLR and DLR reflect inherent balance challenges be-
tween detecting new/disappear nodes and maintaining matching accuracy.

Table 1. Ablation Study Results of the Asymmetric Matching Framework.

SEAG TE SE SCB Pre 1 Rec 1 NLR 1t DLR 1

75.68 £ 5.62 74.92 £ 4.71 33.33 £ 11.20 42.86 £ 14.98
96.63 & 1.46 96.51 &+ 1.49 51.35 £ 16.46 78.38 £ 7.92
97.32 £ 1.10 9719 £1.02 67.10 £ 7.92 81.57 + 9.49
97.82 £ 1.01 97.69 £ 1.13 71.88 £ 5.02 75.81 + 12.31
V' |97.99 + 0.89 97.82 + 1.08 70.88 & 7.74 79.24 £+ 11.44

ASENENEN
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In heatmap Fig. 2, the baseline model exhibits unstable attention due to
anatomical ambiguity. The SE module enhances central node stability but in-
creases sensitivity to non-rigid deformations. The correlation extraction module
improves spatial guidance yet over-prioritizes environmental context. The SCB
module addresses these limitations, achieving 97.99% precision while stabiliz-
ing attention patterns evident in cross-temporal heatmaps. However, challenges
persist in context-scarce scenarios where nodes lack sufficient spatial context.

3.3 Comparative Experiment Results and Discussion

Conventional MOT tasks track rigid objects in videos, while our study targets
dynamic 3D LNs in CT with non-rigid deformations. We adapt a graph neural
network method in MOT [22] for our dataset, but as shown in Tab. 2, it performs
less effectively on medical images due to domain differences.
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Fig. 2. Heatmaps track non-rigid deformations in a patient’s LN across scans.

Table 2. Comparison with Multiple Object Tracking (MOT) Method.

Method Pre 1 Rec 1 NLR 1 DLR 1t
LGM][22] 82.26 + 1.50 82.19 4+ 1.44 52.81 + 3.07 56.08+ 14.74
Ours 97.99 + 0.89 97.82 +1.08 70.88 + 7.74 79.24 + 11.44

Table 3. Comparison of Generalized Lesion Tracking Methods.

Method | CPM@Radius T MED (mm) |
TLT[17] 1954 15.98 + 21.63
SAM18| 9.67 39.79 + 38.77
UAE[19] 13.89 25.65 + 17.3

Asymmetric lymph node matching represents a fundamentally distinct task
from conventional center-point tracking. The results in Tab. 3 demonstrate that
generalized lesion tracking methods, while effective for their intended applica-
tions, are not well-suited for our asymmetric matching problem in abdominal
lymph nodes. We identified several limitations in model performance. The small
size of LNs resulted in minimal error tolerance, leading to lower prediction accu-
racy for positive LNs compared to negative cases, particularly due to non-rigid
deformations. Additionally, the model faces challenges in tracking the new and
dsappear LNs. Furthermore, two common failure scenarios were observed: (1)
reduced detection sensitivity when LNs shrink in size, and (2) increased false
positive predictions in regions with densely clustered LNs.

4 Conclusion

This study formulates the asymmetric lymph node matching task and proposes
an framework to address the challenges of abdominal LN. Abdominal LNs are
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naturally small and located in a complex anatomical environment. Furthermore,
they may experience changes in size, shape, and number across follow-up CT
scans. We define this scenario in medical target tracking as an asymmetric match-
ing problem. The solution we propose not only addresses this issue but also of-
fers an approach for matching other similar small targets. While the framework
demonstrates matching capabilities, it is still constrained by its dependence on
pairwise CT scan annotations. These annotations require significant clinical ef-
fort and may suffer from inconsistencies in coordinating longitudinal data. As
a result, our methodology currently operates at a semi-automated level and
cannot yet fully eliminate the need for physician involvement. Current efforts
are focused on developing integrated detection-matching solutions to improve
clinical applicability. The established framework lays a crucial foundation for
advancing annotation-efficient tracking methods in medical image analysis.
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