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Abstract. Achieving high-precision medical image segmentation while
maintaining computational efficiency remains a critical challenge for clin-
ical applications. Existing methods often struggle to balance multi-scale
feature fusion, lightweight design and contextual modeling, particularly
for complex medical scenes with ambiguous boundaries. To address these
limitations, We propose DyMAS-Net, a lightweight framework integrat-
ing multi-scale convolution, adaptive dynamic sampling, and dual atten-
tion mechanisms. Key innovations include: (i) Hierarchical Multi-Scale
Convolution Block (HMCB) combining grouped depthwise convolutions
with hybrid attention to capture cross-scale dependencies; (ii) Adap-
tive Dynamic Sampling Module (ADSM) that dynamically adjusts re-
ceptive fields through learnable position offsets and scope prediction, en-
abling context-aware upsampling with minimal computational overhead;
(iii) Dual Attention Fusion Unit (DAFU) integrating channel-spatial at-
tention for global context modeling and depthwise separable gating for
local feature refinement. Extensive evaluations across 7 medical image
segmentation tasks (breast cancer, thyroid nodules, skin lesions) show
DyMAS-Net achieves state-of-the-art performance with an average Dice
score of 87.19%, outperforming TransUnet and SwinUnet by 3.02% and
2.77%, respectively. Remarkably, it attains this with only 6.24M param-
eters and 8.87G FLOPs, 93. 3% fewer parameters than TransUnet. The
framework’s efficiency-accuracy balance enables practical deployment in
resource-constrained environments, thus promoting health equity.

Keywords: Medical Image Segmentation - Lightweight Architecture -
Multi-Scale Feature Fusion - Adaptive Dynamic Sampling.

1 Introduction

Accurate medical image segmentation is foundational for computer-aided di-
agnosis and image-guided interventions, playing a pivotal role in clinical diag-
nosis and treatment planning. However, complex medical scenarios involving
multi-scale structures and ambiguous boundaries, such as tumor infiltration and
low-contrast lesions in ultrasound, pose significant challenges. Current methods
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struggle to balance computational efficiency with the capacity to capture intri-
cate structural variations, particularly in resource-constrained clinical environ-
ments [20]. This limitation exacerbates health inequities, as advanced diagnostic
tools remain inaccessible to underserved regions with limited computational re-
sources [6].

Convolutional Neural Networks (CNNs), as exemplified by architectures such
as U-Net [21], demonstrate strong capabilities in local feature extraction. Subse-
quent variants like U-Net++ [26] and Attention U-Net [16] further refine hierar-
chical feature fusion. However, their constrained receptive fields fundamentally
limit their capacity to capture long-range dependencies, which are crucial for
comprehensive contextual understanding. While recent transformer-based ap-
proaches like Swin-Unet [2] address this limitation through self-attention mech-
anisms, they encounter prohibitively high computational complexity when pro-
cessing high-resolution medical imaging data. Recent efforts to prioritize com-
putational efficiency include lightweight networks such as MobileNetV3 [14] and
UNeXt [23], which achieve computational efficiency through depthwise separa-
ble convolutions. However, these models frequently sacrifice multi-scale feature
fusion and long-range dependency modeling. To address this, EMCAD [I9] in-
troduces an efficient multi-scale convolutional attention decoder. Additionally,
methods such as ConvUNeXt [I3] and CMUNeX¢t [22] utilize large convolutional
kernels but rely on fixed kernel-based interpolation methods, leading to feature
misalignment during upsampling. Although dynamic upsampling methods like
CARAFE |24] enhance spatial adaptation, their computational overhead remains
prohibitive for real-time applications. A critical gap persists in designing models
that harmonize adaptive multi-scale processing, efficient attention mechanisms,
and dynamic spatial adaptation without compromising computational efficiency.

To address these challenges, we propose DyMAS-Net, a lightweight frame-
work that integrates three synergistic components: (i) Hierarchical Multi-Scale
Convolution Block (HMCB): A multi-branch architecture combining grouped
depthwise convolutions with hybrid attention. By fusing features from paral-
lel multi-scale kernels (3x3, 5x5, 7x7) and prioritizing salient features through
channel shuffling, HMCB enhances cross-scale dependency modeling while main-
taining computational efficiency. (ii) Adaptive Dynamic Sampling Module (ADSM):
A novel upsampling mechanism that dynamically adjusts spatial sampling po-
sitions and receptive field ranges through learnable offsets. Unlike fixed-kernel
interpolation methods, ADSM adaptively captures context-aware features during
decoding, effectively mitigating feature misalignment in ambiguous boundary re-
gions. (iii) Dual Attention Fusion Unit (DAFU): A dual-branch attention module
integrating depthwise separable gating for local feature refinement and cascaded
channel-spatial attention for global context aggregation. DAFU bridges semantic
gaps between encoder and decoder features by suppressing irrelevant noise and
amplifying boundary-sensitive information.

Our primary contributions are: (1) We propose HMCB, a hierarchical convo-
lution block that optimizes multi-scale feature fusion via hybrid attention and
kernel grouping, significantly enhancing cross-scale dependency modeling. (2)
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We design ADSM, a dynamic sampling module that adaptively adjusts spatial
sampling positions and ranges, overcoming limitations of fixed-kernel interpo-
lation during upsampling in medical imaging. (3) We introduce DAFU, a dual
attention mechanism that synergizes local feature refinement and global context
modeling to resolve feature misalignment in ambiguous boundary regions. (4) We
develop DyMAS-Net, a unified framework that integrates the above innovations,
achieving state-of-the-art performance across diverse medical segmentation tasks
while maintaining a lightweight design.
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(a) DyMAS-Net

Fig. 1. Overview of DyMAS-Net Architecture. (a) DyMAS-Net, (b) Hierarchical Multi-
Scale Convolution Block (HMCB), (¢) Adaptive Dynamic Sampling Module (ADSM),
(d) Depthwise Separable Attention Gate (DSAG), (e) Channel-Spatial Attention Block
(CSAB), and (f) Dual Attention Fusion Unit (DAFU).

2 Method

In this section, we describe three core components: the Hierarchical Multi-Scale
Convolution Block (HMCB), the Adaptive Dynamic Sampling Module (ADSM),
and the Dual Attention Fusion Unit (DAFU). These components are systemat-
ically integrated into a lightweight framework designed for medical image seg-
mentation named DyMAS-Net.

2.1 Hierarchical Multi-Scale Convolution Block (HMCB)

To address the critical need for efficient multi-scale feature fusion in medical im-
age segmentation, we propose the HMCB, as illustrated in Fig. b). The HMCB
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employs a multi-branch architecture that processes features at multiple scales
while maintaining computational efficiency. For input x, HMCB first expands
the channel dimensions through a pointwise convolution (PW Conv), followed
by parallel depthwise convolutions (DW Conv) with heterogeneous kernel sizes
kil

F; = DWConuvy,(GeLU(BN(PW Conuv(x)))), k; €{3,5,7} (1)

where PW Conv denotes the channel expansion operation, and DW Conuvy,
represents depthwise convolution with kernel size k;. The outputs from the par-
allel branches are fused through either element-wise summation or channel con-
catenation. And the final output combines the fused features with a residual
connection to ensure stable gradient flow:

3
y=PWComw(EPF)) +x (2)
i=1

where @ denotes the fusion operation, which can be either addition or con-
catenation depending on the configuration, and PW Conv compresses the chan-
nels back to the original dimension. The HMCB achieves efficient multi-scale
feature extraction by leveraging grouped depthwise convolutions and residual
connections, substantially reducing computational complexity compared to stan-
dard multi-scale approaches while maintaining the ability to capture features at

different scales.

2.2 Adaptive Dynamic Sampling Module (ADSM)

ADSM (Fig. (c)) is a dynamic point-wise sampling mechanism, designed to
dynamically adjust spatial sampling positions and receptive field ranges during
the upsampling process. Unlike traditional fixed-kernel interpolation methods,
ADSM employs learnable offsets to adaptively capture context-aware features, ef-
fectively mitigating feature misalignment in ambiguous boundary regions. Given
an input feature map z € RE*H*W where C denotes the number of channels,
with H and W representing the height and width of the feature map, respectively.
ADSM first generates a set of learnable offsets Fiffqet € R2GXHXW through a
convolutional layer, where G is the number of groups requiring manual configu-
ration. The generated offsets Fyfrser are then constrained by a range predictor,
which is implemented as a lightweight network, to generate spatial masks that
adaptively regulate the offset magnitudes. This process can be formulated as:

Forpset = Conv(x), Frange = 0(Conv(ReLU(Conv(z))))) (3)

where o is the sigmoid activation function. The final sampling positions are
computed by combining the initial positions p;,;; with the modulated offsets.
The feature map is then sampled based on the adjusted positions:

y = GridSample(z, pinit + Fofrset © Frange) (4)
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where GridSample performs bilinear interpolation based on the calculated off-
sets, and ® denotes element-wise multiplication. This adaptive sampling mech-
anism allows ADSM to dynamically adjust to the local structure of the feature
map, enhancing the model’s ability to capture fine-grained details and reducing
feature misalignment during upsampling.

2.3 Dual Attention Fusion Unit (DAFU)

DAFU ( Fig.[I[f)) integrates two attention mechanisms to refine feature repre-
sentations: Depthwise Separable Attention Gate (DSAG) and Channel-Spatial
Attention Block (CSAB). The DSAG(Fig. [I[d)) operates on decoder features g
and encoder features x, and selectively refines the features based on their rele-
vance. The final output of DSAG is obtained by applying the attention weights
to the encoder feature:

¥ =x-0(Wyg+ Wyz) (5)

where W, and W, are learned filters, and o denotes the Sigmoid function. The
CSAB (Fig. e)) jointly models channel and spatial contexts: channel attention
weights are generated via adaptive average pooling and convolutional layers,
while spatial attention combines max and average pooling features, with their
product enhancing discriminative boundaries and suppressing noise. This dual
mechanism resolves feature misalignment in ambiguous regions.

2.4 Overall Architecture

DyMAS-Net ( Fig. [[fa)) utilizes an encoder-decoder architecture, where the
encoder progressively extracts features at multiple scales using the HMCB, and
the decoder upsamples the feature maps using ADSM. Skip connections are
established between corresponding encoder and decoder layers to preserve spatial
information. The encoder consists of multiple HMCB layers, each followed by
max pooling, while the decoder consists of upsampling layers and fusion blocks
(DSAG, HMCB, and CSAB) to refine the segmentation outputs.

3 Experiments and Results

3.1 Datasets

To validate the effectiveness of our method, we conducted experiments on 7
medical image segmentation datasets covering three clinical scenarios:

Breast Ultrasound Image Segmentation. Three breast cancer ultra-
sound datasets were used: BUSI [I] (437 benign and 210 malignant images),
Breast-Lesions-USG [I7] (256 lesion images), and STU [27] (42 lesion images).

Thyroid Ultrasound Image Segmentation. We employed two thyroid
nodule ultrasound datasets: DDTI [18] containing 637 lesion images and TN3K
[9] with 3,493 lesion images.
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Table 1. Performance comparison of different methods on medical image segmentation
tasks using Dice coefficient.

Methods Params(M)|[FLOPs(G)| Breast Cancer |Thyroid Lesion| Skin Lesion | Avg.
BUSI USG STU [DDTI TN3K |[ISIC17 ISIC18
CA-Net [10] 2.79 5.99 73.02 71.03 77.91|87.20 81.99 | 79.21 82.46 |78.97
UNeXt [23] 1.47 0.57 72.14 67.39 83.53|86.39 77.53 | 86.89 88.89 |80.39
CE-Net [IT] 29.00 8.92 74.71 67.42 82.85|87.99 82.84 | 87.78 88.55 |81.73
CPFNet [§] 30.65 8.07 77.04 72.40 79.75|87.35 83.52 | 86.83 87.95 |82.12
CMUNeXt [22] 3.15 7.40 76.52 76.41 88.22|88.33 82.54 | 83.15 87.28 |83.21
AttUNet [16] 34.87 66.64 |75.62 77.92 86.98|89.48 83.70 | 84.86 86.79 |83.62
UNet [21] 31.03 54.74 74.91 77.98 87.56(89.23 83.21 | 85.62 87.51 |83.72
DSEUNet [15] 69.07 53.82 | 78.02 79.99 84.40(90.15 85.21 | 83.22 87.32 |84.04
TransUnet [5] 93.23 32.24 |80.81 85.31 90.33|90.28 86.34 | 76.76 79.35 | 84.17
SwinUnet [2] 27.15 5.92 78.73 80.61 81.73|90.13 84.96 | 86.83 87.95 |84.42
TransFuse [25] 26.18 11.53 78.39 74.11 86.97|89.89 85.43 | 86.89 89.69 |84.48
NUNet [4] 77.05 40.18 | 78.74 76.23 82.24|90.18 84.96 | 88.96 90.22 |84.50
LGANet [12] 29.11 5.65 80.55 81.37 80.47(91.15 86.44 | 86.69 89.36 |85.15
CARAFE [24] 8.17 14.78 76.41 79.97 88.50|90.87 85.59 | 87.04 87.76 |85.16
AAUNet [3] 221.60 330.79 |80.52 80.34 84.42|90.83 85.06 |89.21 90.44|85.83
DyMAS-Net(Ours) 6.24 8.87 78.45 85.34 90.76|91.00 86.18 | 89.17 89.42 |87.19

Skin Disease Dermoscopy Image Segmentation. Two ISIC challenge for
skin disease analysis datasets were selected: ISIC2017 [7] (2,750 lesion images),
and ISIC2018 [6] (2,594 images).

These datasets originate from diverse clinical centers and exhibit significant
variations in image characteristics and lesion morphology, enabling comprehen-
sive evaluation of segmentation robustness.

3.2 Implementation Details

We implemented our model using PyTorch 1.11.0 on an NVIDIA Tesla V100-
SXM2-32GB GPU. All input images were resized to 256 x 256 pixels to ensure
consistency. Data augmentation techniques including random rotation (+£15°)
and horizontal /vertical flipping were applied during training. A hybrid loss com-
bining Binary Cross-Entropy (BCE) and Dice coefficient was employed as the
final loss function. The model was trained for 250 epochs using the Adam opti-
mizer with an initial learning rate of 1 x 10~% and a batch size of 32. Training
and validation sets were split in a 4:1 ratio. Segmentation performance was eval-
uated using Dice coefficient, with additional comparisons of model complexity
through parameter counts (M) and FLOPs (G).

3.3 Performance Comparison

We classified the compared models into CNN-based and Transformer-based ar-
chitectures, with further distinction between lightweight and non-lightweight
models. As shown in Table [T, our DyMAS-Net achieves state-of-the-art perfor-
mance with only 6.24M parameters and 8.87G FLOPs, demonstrating superior
efficiency-accuracy balance compared to both lightweight and non-lightweight
counterparts.
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The CNN-based models include the classic UNet[2I] and its variants. Among
lightweight designs, UNeXt [23] achieves 80.39% average Dice, while CMUNeXt
[22] reaches 83.21%. Notably, our model surpasses CARAFE [24], a dynamic up-
sampling method with 8.17M parameters and 14.78G FLOPs, by 2.03% in aver-
age Dice while using 23.62% fewer parameters. Compared to the non-lightweight
DSEUNet [I5], DyMAS-Net improves segmentation accuracy by 3.15% with only
9.03% of its parameters.

For Transformer-based approaches, hybrid architectures like TransFuse [25]
achieve 84.48% Dice, while pure Transformer models such as SwinUnet [2] at-
tain 84.42%. Remarkably, DyMAS-Net outperforms the heavyweight TransUnet
[5] by 3.02% Dice using merely 6.7% of its parameters. Our model outperforms
LGANet [I2] and AAUNet [3], both of which achieve suboptimal segmentation
performance despite utilizing substantially higher computational cost. This ad-
vancement demonstrates a remarkable efficiency-accuracy trade-off, making it
more practical for resource-constrained scenarios. Fig. [2] visually confirms our
model’s superior boundary details preservation capability compared to existing
methods.

age GT

DyMAS-Net(ours) AAUNet DSEUNet UNet UNeXt NUNet SwinUnet

O

UsG

DDTI

©) A =

Fig. 2. Visual comparison of segmentation results by representative methods across
different datasets.

3.4 Ablation Study

To evaluate the contribution of each proposed component, we conducted com-
prehensive ablation studies on five medical image segmentation datasets (BUSI,
USG, STU, DDTI, TN3K) using different combinations of our key modules. As
detailed in Table[2] the baseline configuration with only HMCB achieves compet-
itive performance with fewer parameters, establishing an efficient foundation for
multi-scale feature extraction. When using ADSM alone, the model requires sig-
nificantly higher computational resources for marginal accuracy gains, indicating
that dynamic sampling without multi-scale context modeling leads to suboptimal
efficiency. Similarly, the standalone DAFU configuration exhibits high parame-
ter cost with limited performance improvements, emphasizing the necessity of
synergistic module integration.



8 S. Wang et al.

The pairwise combinations reveal critical synergies: integrating HMCB with
DAFU improves accuracy by 1.44% while maintaining parameter efficiency, vali-
dating the complementary nature of multi-scale convolution and attention-based
feature refinement. Conversely, the ADSM+DAFU combination achieves higher
accuracy but incurs more FLOPs, underscoring HMCB’s role in balancing com-
putational complexity. The complete DyMAS-Net configuration achieves optimal
performance with only 6.24M parameters, demonstrating a 2.80% improvement
in accuracy over the baseline HMCB while using approximately 70% fewer pa-
rameters than ADSM / DAFU configurations alone.

This evidences three critical design insights: 1) HMCB’s hierarchical multi-
scale processing forms an efficient backbone. 2) ADSM contributes the most
significant accuracy gains through adaptive dynamic spatial sampling, particu-
larly enhancing boundary delineation; 3) DAFU bridges semantic gaps between
encoder-decoder features, improving small lesion segmentation through dual at-
tention mechanisms. The progressive performance gains confirm that our mod-
ular design achieves effective efficiency-accuracy trade-offs through complemen-
tary feature enhancement pathways.

Table 2. Ablation studies of key components (HMCB, ADSM, DAFU).

HMCB|ADSM|DAFU|Params (M)|FLOPs (G)|Avg. Dice
v X X 5.61 7.48 83.55
X v X 21.01 13.05 83.74
X X v 21.17 14.17 83.32
v X v 5.89 7.98 84.99
X v v 21.39 14.31 85.11
v v v 6.24 8.87 86.35

4 Conclusions

This paper introduces DyMAS-Net, a lightweight framework that effectively bal-
ances segmentation accuracy and computational efficiency for medical imaging
analysis. By integrating hierarchical multi-scale convolution blocks, adaptive dy-
namic sampling mechanisms, and dual attention fusion unit, our approach ef-
fectively handles ambiguous boundaries and multi-scale structural variations in
complex clinical scenarios. Extensive evaluations across diverse medical imaging
datasets demonstrate that DyMAS-Net achieves competitive performance com-
pared to existing approaches while maintaining significantly reduced computa-
tional demands, making it particularly suitable for resource-constrained clinical
deployments. Despite these strengths, our current evaluations primarily focus on
ultrasound and dermoscopy images, suggesting a need for further validation on
a broader range of medical imaging modalities, and for systematic investigation
of its robustness under real-world noise and varied protocols. Future work will
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explore hybrid architectures to further enhance segmentation capabilities while
maintaining operational efficiency. We believe this work advances accessible di-
agnostic solutions, contributing to equitable healthcare delivery in underserved
regions through efficient medical imaging technologies.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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