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Abstract. 3D medical image generation is essential for data augmenta-
tion and patient privacy, calling for reliable and efficient models suited for
clinical practice. However, current methods suffer from limited anatom-
ical fidelity, restricted axial length, and substantial computational cost,
placing them beyond reach for regions with limited resources and in-
frastructure. We introduce TRACE, a framework that generates 3D
medical images with spatiotemporal alignment using a 2D multimodal-
conditioned diffusion approach. TRACE models sequential 2D slices as
video frame pairs, combining segmentation priors and radiology reports
for anatomical alignment, incorporating optical flow to sustain temporal
coherence. During inference, an overlapping-frame strategy links frame
pairs into a flexible length sequence, reconstructed into a spatiotempo-
rally and anatomically aligned 3D volume. Experimental results demon-
strate that TRACE effectively balances computational efficiency with
preserving anatomical fidelity and spatiotemporal consistency. Code
is available at: https://github.com/VinyehShaw/TRACE.

Keywords: 3D Medical Imaging · Anatomical Fidelity · Multimodal
Conditionally Guided Generation

1 Introduction

3D medical image generation is critical for diagnosis, personalized treatment,
and surgical planning, yet privacy concerns and data scarcity hinder model de-
velopment [1,16]. Diffusion models have shown promise by preserving data pri-
vacy but often assume isotropic generation [38,10], whereas CT volumes exhibit
anisotropic shapes, with varying slice counts and scan lengths [24,28]. However,
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ensuring anatomical fidelity and spatiotemporal consistency remains computa-
tionally expensive [34]. Prior methods struggle to enforce structural constraints,
generating slices that fail to capture complex anatomical variations, thereby
limiting clinical applicability [18,5].

Recent works integrate transformers and diffusion models [9], drawing inspi-
ration from video generation [13,26], but suffer from high computational over-
head. Semantic synthesis methods, including GAN and diffusion-based models
[3,6,35,26,37], provide anatomical control yet often lack strict pixel-wise con-
straints. SegGuidedDiff [18] conditions synthesis on segmentation masks, while
lesion-focused approaches [19] improve localized synthesis. However, existing
methods either fail to generalize to 3D medical images or require complex multi-
stage pipelines [2,14,36]. To this end, we propose TRACE, a multimodal 2D
diffusion framework that synthesizes 3D CT volumes as temporally aligned 2D
slice sequences with anatomical and semantic guidance.

To our knowledge, this is the first work to generate unrestricted axial-length
3D medical imaging by synthesizing consistent 2D image sequences using con-
ditionally guided 2D diffusion. Our contributions are summarized as follows:
(1) Reconceptualizing 3D medical volume generation, we introduce a frame-
work that models volumetric data as temporally coherent sequences, enabling
flexible axial resolution while significantly improving computational efficiency
through multi-conditioned 2D diffusion. (2) Ensuring anatomical fidelity and
structural coherence, we incorporate frame skipping and positional encoding
for temporal consistency, optical flow-based spatial alignment, and multimodal
priors from segmentation masks and radiology reports, preserving anatomical
structures across slices. (3) Advancing evaluation paradigms for generative med-
ical imaging, we propose an anatomical fidelity assessment for generated volumes
and demonstrate that our method achieves superior anatomical accuracy while
reducing training and inference costs by 87.5% and 92.5%, respectively.

2 Methodology

We propose a 3D CT generation framework that leverages a 2D diffusion model
within a video generation paradigm. The term “temporal” denotes the ordered
progression of axial slices scanning sequence, enabling the model to capture inter-
slice continuity via variable-interval frame pairs and ensure smooth transitions
through Overlapping Frame Guidance during inference time. The generation
operates in a 2.5D manner without full 3D computation, while the final outputs
are assembled into 3D volumes. Anatomical fidelity synthesis is guided by optical
flow for continuity, positional embeddings for slice ordering, text prompts for
semantic context, and anatomical priors from NVIDIA VISTA3D [11].

2.1 Conditional 2D Diffusion for 3D CT Synthesis

Paired Frame Temporal Modeling. Our framework employs a 2D diffu-
sion model to synthesize 3D CT images by processing frame pairs. Each pair
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Fig. 1. TRACE models 3D CT volumes as sequences of frames, utilizing an efficient 2D
diffusion model conditioned on multiple modalities to generate flexible length, coher-
ent CT sequences. During training, it denoises frame pairs with varying skip intervals,
guided by four modalities: anatomical masks (VISTA3D), optical flow between frames
(RAFT), report embeddings (CLIP), and relative position embeddings. The optical
flow and text embeddings pass through trainable adapters before entering the diffusion
model. Inference employs an overlapping-frame guidance strategy to synthesize seman-
tically aligned frame pairs, generating anatomically consistent CT sequences, which
are then reconstructed back to 3D volumes.

is concatenated along the channel dimension, forming an input tensor of shape
(B, 2C,H,W ), where B is the batch size, C the number of channels, and H,W
the spatial dimensions. This enables convolutional filters to jointly process paired
frames, implicitly capturing temporal dependencies within a 2D framework while
maintaining computational efficiency. Unlike explicit 3D diffusion models, our
approach encodes temporal relations through channel-wise feature interactions,
enhancing temporal continuity without increasing dimensional complexity.

To accommodate CT-specific Z-spacing variations [23], we introduce a frame-
skipping strategy that aligns with real-world axial resolutions. Given common
spacings of 0.7, 1.5, and 3 mm in our dataset, we set frame intervals to 1, 2, and
4, respectively. Formally, the sampling strategy is defined as:

P = {(i, j) | j = i+ k, i mod k = 0, k ∈ {1, 2, 4}}. (1)

where (i, j) denotes a pair of frames sampled at interval k. Training with di-
verse frame pairs enhances the model’s ability to capture short- and long-term
dependencies, improving spatial consistency across slices.

For each pair (i, j) ∈ P , we compute the dense optical flow fi→j using RAFT
[30] and integrate it via a trainable convolutional adapter and injected through
mid-block residuals to provide structural guidance for temporal alignment. The
model learns coherence through latent space regularization: let x

(i)
t and x

(j)
t

denote the latent representations of frames i and j at time step t. We enforce
temporal consistency by minimizing the mean squared error (MSE) between
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latent representations of frame pairs:

Tcoherence = E(i,j)∈P

[
||x(i)

t − x
(j)
t ||2

]
. (2)

This implicitly encourages adjacent frames to share aligned latent representa-
tions, promoting temporal smoothness across slices.
Anatomical Guidance. To explicitly preserve anatomical fidelity, we condition
the generation of an image x0 ∈ Rc×h×w on a multi-class anatomical mask
m ∈ {0, . . . , n − 1}1×h×w, where c is the channel count, h and w the spatial
dimensions, and n the number of classes. Masks from VISTA3D (127 classes)
cover diverse human structures, and our goal is to sample from p(x0 | m) so that
outputs conform to the provided anatomy. While the forward noising process
q(xt | xt−1) remains unchanged, both the reverse process pθ(xt−1 | xt,m) and
noise prediction network ϵθ are conditioned on m. Specifically, we optimize the
shared MSE objective:

Lm = E(x0,m),t,ϵ

[∥∥∥ϵ− ϵθ

(√
αtx0 +

√
1− αtϵ, t,m

)∥∥∥2] , (3)

ensuring that anatomical priors guide the denoising. For paired frame generation,
anatomical masks (mi,mj) for each frame pair are concatenated with the input
at every denoising step so that

ϵθ(x
(i,j)
t , t | mi,mj) : R(2c+2)×h×w → R2c×h×w. (4)

In addition, patient-specific text prompts are encoded by a frozen CLIP encoder
into vt. This embedding is processed by a linear adapter,v′

t = ϕ2

(
W2 ϕ1(W1 vt)

)
,

where W1,W2 are learnable linear projections and ϕ1, ϕ2 are GELU activations.
The adapter output v′

t is then injected via a lightweight cross-attention mod-
ule into the U-Net encoder features and added to the existing hidden state:
ht = ht +v′

t, so that the model incorporates both precise anatomical priors and
high-level textual semantics at each denoising step.
Temporal Position Encoding. We encode the temporal position of each frame
using sinusoidal embeddings. For a sequence with start frame f0 and end frame
fN , the normalized position of frame fi is given by ri =

fi−f0
fN−f0

. The embedding
is defined as

E(ri)k = sin
( ri
10000λ2k/d

)
, E(ri)k+1 = cos

( ri
10000λ2k/d

)
, (5)

where d is the embedding dimension, k indexes the dimensions, and λ is a scaling
factor. For each frame pair (i, j), the concatenated embeddings E(ri, rj) are used
to condition the diffusion process, i.e., ϵθ(x

(i,j)
t , t, E(ri, rj)). This facilitates tem-

poral context integration, yielding smoother transitions and consistent temporal
alignment in the generated CT sequences.

2.2 Inference via Overlapping Frame Guidance

Traditional diffusion models, formulated as Markovian processes, generate im-
ages step by step without memory of earlier states. In contrast, thoracic CT
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Algorithm 1 Overlapping Frame Guidance Inference
1: Given: Total frames N , Anatomical Prior {M(n)}Nn=0

2: Initialize:
3: x̃t ← Concat(xt, M(0), M(1))
4: (x(0), x(1))← DDIM(x̃t)
5: for n = 1 to N − 1 do
6: G(n)←M(n) + [1−M(n)] · F (H (x(n)γ))
7: x̃t ← Concat(xt, G(n), M(n+ 1))
8: (x̃(n), x̃(n+ 1))← DDIM(x̃t)
9: G(n+ 1)←M(n+ 1) + [1−M(n+ 1)] · F (H (x̃(n)γ))

10: x̃t ← Concat(xt, G(n), G(n+ 1))
11: (x(n), x(n+ 1))← DDIM(x̃t)
12: end for
13: Output: Frames {x(n)}Nn=0

imaging features small Z-axis spacing, resulting in subtle, consistent changes
between slices that demand temporal and spatial coherence. To address this,
we propose an overlapping frame guidance strategy, a non-Markovian approach
where each generated frame directly informs the next to extend anatomical co-
herence across the sequence. As shown in fig. 1, overlapping frame pairs form a
chain, with optical flow estimated between synthesised frames to ensure auto-
matic alignment and continuity.

As shown in algorithm 1, the inference process begins by generating the ini-
tial frame pair (x(0),x(1)), relying on the anatomical priors M(0) and M(1).
These segmentation masks serve as essential guides, structuring the initial in-
put as x̃t = Concat(xt,M(0),M(1)). This input, combining random noise with
anatomical context, is passed through the DDIM process to produce the initial
frames (x(0),x(1)) that anchor the generation sequence.

For each subsequent frame pair, the process leverages overlapping frame guid-
ance to ensure continuity. Specifically, for frame x(n+ 1), the previously gener-
ated frame x(n) and its mask M(n) are incorporated to create a guidance map
G(n). This map is constructed by processing x(n) through a transformation
x̂(n) = F (H (x(n)γ)), where γ amplifies high-intensity features, H selectively
smooths the background, and F normalizes the values. This results in G(n) =
M(n)+[1−M(n)]·x̂(n), a map that emphasises anatomical regions while smooth-
ing transitions elsewhere. The generated guidance map G(n), together with the
segmentation mask M(n+1), forms the input x̃t = Concat(xt, G(n),M(n+1))
for the next DDIM step, producing frames (x̃(n), x̃(n+1)). This recursive setup,
detailed in the pseudocode, ensures each new frame is conditioned on the prior
frame, promoting temporal coherence across the sequence {x(n)}Nn=0 while pre-
serving anatomical fidelity.

3 Experiment and Results

Dataset. We use the CT-RATE [8] dataset, containing de-identified chest CT
volumes and radiology reports from 21,314 patients [20]. The training set com-
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Table 1. Quantitative and ablation results for 6 VBench dimensions, VRAM usage,
throughput, and anatomical fidelity assessed by three segmentation metrics.

Method SC BC TF MS IQ OC JI↑ DC↑ 95HD↓ FPS↑ Train/Infer

GT 84.6 95.3 99.1 99.4 52.9 21.6 100.0 100.0 0.0 – –

GenerateCT[9] 77.8 94.7 94.0 95.5 48.6 19.6 5.0 9.5 220.1 1.09 8×80GB/80GB
MedSyn[34] 74.3 91.7 95.6 95.7 50.3 20.8 35.4 47.8 59.9 3.91 4×48GB/96GB

PFM 67.3 90.7 94.8 73.2 32.7 15.3 20.9 25.3 87.4 6.53 80GB/6GB
DAG 54.5 86.4 85.7 90.2 50.3 18.5 52.7 59.4 33.2 5.52 80GB/6GB

PFM,DAG 67.7 92.8 95.5 96.2 51.2 19.1 54.6 63.5 30.9 4.98 80GB/6GB

50/[1] 77.3 92.9 93.4 94.8 51.5 21.0 58.8 73.4 19.2 4.27 80GB/6GB
100/[1,2] 78.3 94.6 95.3 96.0 50.3 19.8 59.8 69.4 21.8 3.56 80GB/6GB
50/[1,2,4] 80.1 95.1 96.0 97.3 53.9 19.3 62.8 73.5 14.3 3.89 80GB/6GB

PFM,DAG,OFG
100/[1,2,4](Ours) 80.2 95.2 96.1 96.7 52.6 21.6 62.9 76.5 13.4 3.45 80GB/6GB

prises 100 randomly selected CT volumes (512×512 pixels, 150–600 slices each;
22,000 scans total), with test volumes from unseen patients. All CT scans are
preprocessed via HU recalibration, spatial orientation, and voxel spacing stan-
dardization. Radiology reports are parsed into text prompts formatted as “{age}
years old {sex}: {impression}”.
Implementation Details. We train our model with AdamW [22] at an initial
rate of 1× 10−5 (cosine annealed to 1× 10−6 after 35,000 warmup steps) for 280
epochs with a batch size of 28, taking 10 days on one NVIDIA A100 GPU. CT
slices are downsampled to 256×256, frame pairs are sampled at skip intervals
[1, 2, 4] with optical flow computed at full resolution. Inference uses a frame
embedding of 64 and a batch size of 1 on a NVIDIA 1660Ti (6GB).

3.1 Quantitative Evaluation

We extend GenerateCT with an optimized evaluation framework that quantifies
temporal consistency, frame quality, semantic alignment, memory efficiency, and
anatomical fidelity (see table 1).
Anatomical Fidelity. Generated 3D volumes are standardized to HU with
uniform orientation and voxel spacing, then segmented via VISTA3D [11]. We
assess fidelity by comparing generated and ground truth segmentations using
Dice Coefficient (DC), Jaccard Index (JI) 95% Hausdorff Distance (95HD) [29].
VBench. VBench [15] evaluates key video properties: Subject Consistency (SC,
DINO [4]), Background Consistency (BC, CLIP [25]), Temporal Flickering (TF),
Motion Smoothness (MS, video interpolation priors [21]), Imaging Quality (IQ,
MUSIQ [17] on SPAQ [7]), and Overall Consistency (OC, ViCLIP [33]). All
results are reported as percentages, higher scores denote better performance.
FVD & FID. Follow GenerateCT, we use FID for slice-level fidelity and FVD
(via I3D [31]) for video quality and temporal coherence; lower values indicate
superior performance [12].

TRACE surpasses GenerateCT and MedSyn in Subject Consistency and Mo-
tion Smoothness. For GenerateCT, achieving approximately 705% and 1158%
increase in Dice and Jaccard scores, respectively. FPS reflects the inference
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Fig. 2. Comparison of generated results for a “52-year-old male with thoracic aor-
tic dilatation, hepatomegaly, hepatosteatosis, hiatal hernia, and a hypodense thyroid
nodule”. (a) Axial slices from GenerateCT, our method, and ground truth across the
upper, middle, and lower thorax (frames 9–18, 174–183, 379–388), spanning diaphragm
to clavicle. (b) 3D renderings of the skeleton, thoracic cavity, and lung structures. (c)
Segmentation comparisons in axial, sagittal, and coronal views, with corresponding
3D visualizations. (d) Multiplanar slices from different methods for a 26-year-old male
with COVID-19 pneumonia. (e) Ablation study on anatomical mask granularity.

throughput. Since our method generates 2D frame pairs, we report the aver-
age slices per second at the CT volume level for fair comparison across methods,
following the official settings and using a single NVIDIA H20 GPU (96GB) for
all methods. The training and inference memory requirements, shown in column
12, are based on official implementations, where TRACE requires at least only a
GTX 1660 Ti (6GB) for inference and a single A100 (80GB) for training, com-
pared to 8 A100s for GenerateCT and 4 A6000s for MedSyn from their official
configuration.

3.2 Qualitative Results

We conduct qualitative experiments to assess the spatiotemporal and anatomical
consistency of TRACE in generating flexible-length 3D CT sequences.
Spatiotemporal Consistency. As shown in fig. 2(a), TRACE produces tem-
porally coherent sequences with smooth transitions across frames in key regions
(from diaphragm to clavicle, covering lower thorax, lung hilum, and upper tho-
rax). In contrast, GenerateCT’s result on the same case, as presented from their
official release, exhibits abrupt discontinuities that may impede clinical interpre-
tation. Notably, TRACE supports arbitrary sequence lengths without compro-
mising coherence, demonstrating its scalability and robustness.
Anatomical Fidelity. Generated volumes are standardized to HU and seg-
mented with VISTA3D [11]. In 2D views, as shown in fig. 2(c), TRACE main-
tains accurate organ structures, tissue contrast, and proper anatomical position-
ing across axial, sagittal, and coronal planes, while GenerateCT often exhibits
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Table 2. Additional quantitative comparison of our method with baseline methods
evaluated using the framework from GenerateCT.

Method Out FID↓ FVDI3D↓ CLIP↑
GT - -6.7 472.8 29.9

Imagen [27] 2D 160.8 3557.7 24.8
SD [26] 2D 151.7 3513.5 23.5

Phenaki [32] 3D 104.3 1886.8 25.2
GenerateCT [9] 3D 127.4 1382.4 27.4

Ours 3D 98.6 1176.7 29.4

misaligned or missing features. In 3D renderings, fig. 2(b) and fig. 2(c)-3D illus-
trate that TRACE preserves detailed thoracic anatomy and the original axial
length, whereas GenerateCT suffers from significant information loss.

3.3 Additional Comparison Study

Existing Methods. We compare our method against four state-of-the-art ap-
proaches: Imagen [27] and Stable Diffusion (SD) [26], which generate high-
resolution 2D slices based on text and slice indices; Phenaki [32], a text-to-video
model adapted for 3D chest CT; and GenerateCT [9], the first framework for 3D
chest CT synthesis from natural language prompts.
Results and Effectiveness. As shown in fig. 2(d), our method achieves su-
perior spatiotemporal coherence in coronal and sagittal views when compared
to the results reported by GenerateCT. By leveraging optical flow-guided frame
skipping and overlapping frame guidance, our model attains a lower FVDI3D of
1176.7, compared to 3557.7 for Imagen, 3513.5 for SD, and 1886.8 for Phenaki
(see table 2). While Phenaki exhibits some spatial consistency, it lacks the
anatomical detail required for clinical use. In contrast, our approach, guided
by anatomical priors from reports and masks, produces images with enhanced
structural integrity, particularly in the thoracic region and abdominal organs,
closely approximating real images. GenerateCT, for instance, shows inconsistent
sagittal scales and omits critical anatomical information, resulting in slightly
inferior FID and CLIP scores (see fig. 2(d) and table 2). Noted that the negative
FID value stems from highly similar slices. Overall, our method offers significant
advantages in anatomical accuracy, image quality, and semantic consistency.

3.4 Ablation Study

To facilitate modular analysis, we abbreviated key components of TRACE as
follows: (i) Paired Frame Modeling (PFM, Sec 2.1.1) vs. single-frame genera-
tion, (ii) Dual Anatomical Guidance (DAG, Sec 2.1.2) vs. unconditional gen-
eration, and (iii) Overlapping Frame Guidance (OFG, Sec 2.2) vs. Traditional
Markovian inference. As depicted in table 1, PFM improves background consis-
tency and reduces flickering by leveraging inter-frame dependencies, while DAG
enhances imaging quality with explicit anatomical priors. Their combination
yields smoother motion but lacks long-range interactions, which OFG addresses
by recursively fusing local and global cues for coherent anatomy.
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Anatomical Mask Granularity. We further evaluated mask granularity by
comparing: (i) 2-class (anatomy vs. background, fig. 2(e) row 1), (ii) 128-class
(fig. 2(e) row 2), and (iii) 3-class (lungs, other organs, background). The 3-
class mask minimizes misalignment (e.g., generating the spleen as lung tissue),
achieving optimal anatomical consistency.
Skipping Intervals and Sample Size. We test frame skipping with intervals of
(i) k = 1, (ii) k = 1, 2, and (iii) k = 1, 2, 4. Notation such as “100/[1,2]” indicates
a training set of 100 patients and the use of frame skip intervals of 1 and 2,
respectively. As shown in table 1 (rows 8–10), the k = 1, 2, 4 strategy yields the
best temporal consistency, particularly with a larger dataset (100 patients, row
11, ours), balancing efficiency and spatial coherence.

4 Conclusion

TRACE rethinks the problem of clinical 3D image generation by formulat-
ing chest CT volumes as temporally coherent sequences of 2D slices, enabling
anatomical fidelity, flexible axial length, and computational efficiency through a
multimodal 2D diffusion framework, providing a scalable solution for data gener-
ation in low-resource settings and informing future research in medical imaging.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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