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Abstract. The adoption of contrast agents in medical imaging is es-
sential for accurate diagnosis. While highly effective and characterized
by an excellent safety profile, the use of contrast agents has its limi-
tation, including rare risk of allergic reactions, potential environmental
impact and economic burdens on patients and healthcare systems. This
work addresses the contrast agent reduction (CAR) problem, aiming to
minimize the administered dosage while preserving image quality. Unlike
existing deep learning methods that simulate high-dose images from low-
dose inputs via end-to-end models, we propose a learned inverse problem
(LIP) approach. By learning an operator that maps high-dose to low-
dose images, we reformulate CAR as an inverse problem, solved through
regularized optimization to enhance data consistency. Numerical exper-
iments on pre-clinical images demonstrate improved accuracy compared
to traditional methods.
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1 Introduction

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are es-
sential in healthcare, but detecting small or low-contrast structures remains chal-
lenging. Contrast Agents (CAs), like iodine for CT and gadolinium for MRI, en-
hance image clarity by differentiating lesions from healthy tissue. While generally
safe, minimizing CA dosage without compromising image quality is a technical
challenge that could also reduce medical costs. In the following, we refer to the
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Contrast Agent Reduction (CAR) problem as the task aiming to lower CA levels
while maintaining diagnostic accuracy.

The outstanding advancements in deep learning have led to new digital imag-
ing techniques for addressing the CAR problem. However, these applications are
very recent, starting with [7] in 2018 and followed by studies from 2021 on-
ward [1,3,4,10,11,14-18,21,23]. This highlights that CAR is a modern challenge
in medical imaging, with a limited body of existing literature. Interestingly,
most of the cited methods use deep Neural Networks (NNs) to simulate high-
dose images from low-dose inputs directly, i.e., through end-to-end processing.
This approach can be expressed as:

Given xp,, compute 5™ = ¥(xy) (1)
where 5™ is the simulated high-dose image computed by the neural network ¥
from the low-dose input @x1,. This scheme assumes the existence of a phenomenon
linking @1, images to the xy ones, whose formal closed form is not known exactly;
thus, it is approximated by a NN. Despite the impressive performance of state-of-
the-art neural networks in end-to-end imaging tasks, this accuracy often comes
at the cost of robustness [2,5,6,9] and the instability of deep learning models
poses a significant concern in the medical field.
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Fig. 1: Visual representation of the LIP-CAR scheme. On the top, the paradigm
shift from an end-to-end approach (blue) to a Learned Inverse Problem frame-
work (green); on the bottom, the iterative scheme of the proposed implementa-
tion based on two neural networks, Wprog and ¥Upyor,.
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In this work, rather than using a deep network as a direct end-to-end solver,
we train a neural network to implement the forward operator F, mapping high-
dose images to their low-dose counterparts. Indeed, we assume the existence of a
second phenomenon, approximated by JF, which has never been explored in the
literature for the CAR problem.

Our formulation allows us to re-design the digital CA-enhancement as an
imaging inverse problem which can be described as:

sim

solving F(xf™) = 1. (2)

Given xy,, compute x5 ™
To solve this inverse problem, we exploit the wide literature of model-based opti-
mization techniques, and reformulate problem (2) into a regularized least square
minimization problem. In this way, we can incorporate well-established regular-
ization tools acting as robust image priors R, which further ensure robustness
and accuracy in digitally simulated high-dose images. The proposed formulation
to address CAR imaging problem therefore reads:

. 1
Given @y, solve xy;"™ € argmin {2|]:(w) —zL|3 + aR(az)} ) (3)
TeEX

where a > 0 balances the trade-off between data consistency and the regulariza-
tion effect. As we will detail in Section 2, in our proposal we select a regularizer
R(x) that exploits the ability of low-dose to high-dose neural networks (de-
scribed in (1)) to guide the optimization algorithm toward an accurate solution,
while preserving the robustness guaranteed by the inverse problem literature.
We denote the entire framework as LIP-CAR (Learned Inverse Problem for Con-
trast Agent Reduction), and it is shown in Figure 1.

Contributions. We introduce three key innovations in our approach:

— We assign a novel role to a neural network in the context of the CAR imaging
by training it to approximate the unknown forward mapping between high-
dose to low-dose images, thereby defining the forward operator of a blind
non-linear imaging problem.

— Leveraging the learned forward operator introduced in the previous point,
we propose a learned inverse problem formulation for the CAR imaging
task, where high-dose images are reconstructed through a regularized inverse
problem approach, ensuring data consistency and stability. This represents a
paradigm shift from the literature on CAR, and it introduces well-established
mathematical techniques for the first time.

— We validate LIP-CAR on a pre-clinical MRI dataset constituted by real ac-
quisitions provided by an industry partner, and the results demonstrate that
LIP-CAR outperforms state-of-the-art methods in reconstruction accuracy
and robustness. This proves the factual effectiveness and practical applica-
bility of the proposed scheme.
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2 Method

In this section, we first set the notations and contextualize our research into the
state-of-the-art, then we detail our proposal.

Notations. As previously introduced, we denote the digitally-simulated high-
contrasted image as 5™, representing the solution to the CAR imaging problem.
In addition, we label as &y each high-dose image, corresponding to the injection
of a standard reference level of CA, as established either by a regulatory body
or by laboratory protocols. Conversely, x1, refers to low-dose images, acquired
when a reduced amount of CA is administered to the patient. In some clinical
trials, it is also possible to obtain images before any CA injection. We refer to
this type of data as "pre-dose" images, denoted by xp.

All images involved in this study can be acquired through tomographic proce-
dures or MRI techniques and are subsequently reconstructed as grayscale images.
For this work, we focus on 2D slices of size H x W, although the framework can
be extended to 3D imaging with minor modifications. To simplify the processing,
we normalize all images to the range [0, 1]. We define X as the set of pixel-wise
non-negative images, i.e., X = fow and we assume that xp, zr, xg € X.

2.1 Background of CAR imaging

Since the 1990s, mathematical models have been developed to describe the
distribution-excretion of contrast agents (CAs), notably in Tofts et al. [20]. How-
ever, the exact mechanisms remain unclear due to the complexity of modeling
diverse physical and chemical interactions in the body. The advent of deep learn-
ing has reignited interest in CA-related biomedical imaging, as neural networks,
being universal approximators [12], show promise in capturing these complex
dynamics. Specifically relevant to our work, [3] leverages a V-Net to generate
high-dose MRI brain images from low-dose scans using just 25% of the stan-
dard gadolinium-based CA dose. Further examples of NNs usages for CAR are
provided in [1,4,7,10,14,15,17,23].

These methods strongly rely on NNs, as they propose to compute the digitally
enhanced CA image through an inference on one end-to-end NN, hereafter called
U, as stated in Equation (1). Precisely, the ¥ operator is trained to approximate
the xy images, based on the availability of registered data (both for training and
for inference). When only the x;, and &y images are provided, the end-to-end
network reads:

\I/LQH: T, —— TH (4)

as it directly maps the low-dose image to the desired one. When also the pre-
dose images are provided, the comparison between xj, and xp offers important
hints for the contrast enhancement of the CAR imaging task. Consequently, the
¥ operator becomes:

Upron: (xp, 1) — TH, (5)
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where the notation remarks that the network expects both the images in input.
More recently, deep generative models (and, in particular, GANs [8]) have been
successfully applied to the task of CAR, obtaining remarkable results [11, 16].
However, due to the inherent mechanism driven by generator/discriminator du-
ality, these models are prone to hallucinations [22] and their use in the field of
medical imaging is still limited.

2.2 The learned image-to-image operator

To implement our LIP-CAR approach, the first task is to approximate the for-
ward operator F: X — X, introduced in Equation (2). In this work, we propose
learning F through a neural network that is used in inference mode at each
iteration, as denoted in Figure 1. When the pre-dose images are not available,
we can approximate it as:

UyoL : TH — L, (6)

whereas
Upor, : (Tp, H) — X1, (7

is preferable whenever xp samples are provided.

We remark that the comparison between xp and xy, i.e., between images having
minimal and maximum contrast agent, is expected to be very informative for
simulating the target low-dose image, as the two input elements of Wpyor, already
contain much of the structural information. This may give Wpyor, an inherent
advantage, with respect to the end-to-end aforementioned approaches.

Network architecture and training. In the experiments, to allow for a fair compar-
ison with the state-of-the-art, we employ a VNet-like architecture for our Wysor,
model, as in [3]. The VNet is a variant of the popular UNet [19] where strided
convolutions are used for downscaling instead of maxpooling. When employed,
the pre-dose data is fed into the network by concatenating it with the high-dose
image. Note that, since  p and oy have the same shape, this operation does not
require any extra process. The resulting model is then trained for a total of 80
epochs and a batch size of 16, employing the Adam optimization algorithm [13]
with a fixed step size of 1073. We consider an SSIM-based loss function [24] for
training. Therefore, we consider:

N
L(Uppar) = % > (1= SSIM(¥ppar(zp, T}, 1)) | (8)

=1

where the index i enumerates the samples in our training set, for the Upyor,
network, and a similar loss for Uyor,.

2.3 The reformulation into an optimization problem

The presence of the forward operator allows the CAR reformulation as the in-
verse problem stated in (2), which can be solved through the problem statement
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as in (3). Indeed, the neural network structure of Wyor, and Wppor, guarantees
continuity and, under suitable assumptions on the activation functions, differ-
entiability, making them suitable for first-order optimization algorithms. We
highlight that such minimization problem must be solved with an iterative pro-
cedure, to be set according to the mathematical properties of the functional to
minimize.

It is known in the literature that solving an inverse problem through an opti-
mization reformulation can offer advantages in terms of efficiency, flexibility, and
robustness compared to direct inversion methods. In expression (3), in fact, the
least square term forces the data fidelity with the simulated high-dose image,
whereas the component R(x) serves as a regularization term that incorporates
desired a-priori information on the solution and penalizes all the candidate so-
lutions that do not present the features we aim to recover.

The choice of R is of crucial importance. To set it, we exploit the well-
established regularization techniques that have already been extensively used in
medical image processing to get a reliable solution. We thus select the Gener-
alized ¢;-Total Variation (GenTV) regularizer, which ensures that the solution
image closely resembles a possibly good guess of 5™ in terms of gradient trans-
forms. Denoting that guess as Ty, GenTV reads:

R(z) = ||V (z —Zx) |, (9)

where V denotes the gradient operator. In our scenario, GenTV can easily take
advantage of the end-to-end networks, and g can be computed as ¥y () or
Upron(er). As depicted in Figure 1, in our iterative resolution, ¥prop undergoes
a single forward pass to plug its output in the regularization term.

At last, we remark that our selection of R is merely illustrative since the LIP-
CAR approach lets us accommodate models other than (3), both for the data-
fidelity operator, the regularizer and the feasible set X.

3 Numerical Experiments

3.1 Dataset

We conduct our study on real CA images from a pre-clinical trial. Procedures
were conducted according to the national and international laws on experimen-
tal animal research (L.D. 26,/2014; Directive 2010/63/EU) and under a specific
Italian Ministerial Authorization (project research number 215/2020-PR), by
CRB/Test Facility of Bracco Imaging S.p.A. The original dataset is composed of
61 cranial MRI examinations of lab rats affected by an orthotopically induced C6
glioma. Each lab rat underwent an MRI session composed of three T1-weighted
spin echo sequences, respectively acquired before any administration (pre-dose
images), after administration of 0.01 mmol Gd/kg of a non-commercial high
relaxivity dimeric gadolinium based CA (low-dose images), and after adminis-
tration of additional 0.04 mmol Gd/kg of the same agent resulting in a full-dose
injection (high-dose images). We split the original 3D volumes into 2D images
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of 256 x 256 pixels. After cleaning the dataset, we randomly selected 840 images
for training and used the remaining 240 as testing subsets.

Some exemplar xy, xp, and oy, images from the test set are reported in Figure 2.
In the first two sequences, a glioma is present and visible only on the images
with injected CA. The last two cases do not report tumors and are therefore
useful for investigating whether the approaches add false positives. Additionally,
the third case shares similar shapes with the previous samples, whereas the last
one shows a completely diverse head morphology including the olfactory bulb.

3.2 Results and comparisons

TH Tp T NN-L2H NN-PL2H LIP-CAR
0.6627 0.8646 0.8756 0.9007

Image 39

0.4284 0.6764

0.8534 0.8722

Image 177

- 0.4512 0.6821 0.8680 0.8804 0.9020

Image 226

0.3697 0.6330 0.8346 8488 0.8883

Fig. 2: Results on test samples. From left to right: the oy, zp and x, images as
references, the simulated high-dose computed by NN-L2H and NN-PL2H, and
the LIP-CAR solutions. The number above each image indicates its SSIM value
relative to the target xy. The red circles highlight tumoral masses, expected to
be more discernible in the simulated high-dose images than in @xy,.

Image 141

We run the proposed LIP-CAR framework on test samples and compare its
high-dose simulated images to those generated by some state-of-the-art networks.
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Fig. 3: Comparison of metrics computed with respect to &y on the test samples,
among the original input images and the solutions by the considered methods.
From left to right: SSIM and PSNR (the higher, the better), and RMSE (the
lower, the better).

Some results are reported in Figure 2 for visual inspection, whereas Figure 3
shows boxplots to summarize the metrics evaluated on all the test set.

Here, the label LIP-CAR refers to the version where the F operator is played
by Wpnor,, and the GenTV regularizer defined in Equation (9) relies on the g
image computed by the Uprop operator. We observe that this implementation
heavily exploits all the provided items and tools at best, by using the pre-dose
images both for training the LIP operator and for the regularization term. To
solve the regularized inverse problem we have exploited the widely used Adam
solver [13]. In particular, the optimizer is executed for 150 iterations, with xr, as
starting iterate, and with default Pytorch parameters. We selected o = 6 - 1073
as a regularization parameter; it has been chosen to better balance the visual
appearance of the output and the metrics over all the test samples, heuristically.
Further details about the implementation and parameter choice can be found on
Github, at https://github.com/devangelista2/LIP-CAR/.
As state-of-the-art models for comparison, we use the end-to-end ¥yoy and
Uprop operators, respectively defined in Equations (4) and (5). We refer to
these methods as NN-L2H and NN-PL2H, respectively, to emphasize their
reliance on the direct application of NN, in contrast to the LIP formulation.
They are based on the same VNet architecture used in our Uppysr, and detailed
in Section 2.2, for fair comparison.

The results reported in Figure 2 show that all the considered frameworks
manage to approximate the high-dose images carefully, emphasizing the con-
trast of tumoral masses and adding no false enhancements (potentially causing
hallucinations and false diagnosis). However, LIP-CAR overcomes NN-based
approaches, computing sharp edges and always getting the highest SSIM values.
Indeed, Figure 3 firmly remarks the LIP-CAR success in terms of both SSIM,
PSNR (the higher, the better) and RMSE metrics (the lower, the better). The
boxplots referring to LIP-CAR (the green ones) consistently denote that we
hit the best values, overcoming NN-L2H and NN-PL2H (respectively repre-
sented by the cyan and blue boxplots) and strongly improving the quality of the
acquired xp and @1, images (red and orange boxplots).
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We thus conclude empirically that our mathematically-grounded regularized
approach is highly competitive with state-of-the-art technology.

4 Conclusions

This paper introduces a novel application of neural networks for imaging. LIP-
CAR tackles the contrast-agent reduction imaging task as an inverse problem,
where a convolutional network has learned the forward imaging operator. The
inverse problem is solved with mathematically grounded tools belonging to the
well-established class of optimization and regularization techniques. Numerical
experiments performed on real MRI preclinical images and comparisons with
some state-of-the-art schemes demonstrate the great potential of the LIP-CAR
approach. LIP-CAR outperformed the state-of-the-art schemes in terms of the
quality of simulated high-dose images.

We emphasize that this work represents an introductory study of the learned
inverse problem framework, and that there remains significant room for improve-
ment. While the ResUNet architecture leads to a non-convex objective function
that does not guarantee convergence to a global minimum, the exploration of
architectures that incorporate convexity or smoother behavior could further im-
prove both the robustness and interpretability of the optimization process. We
also plan to investigate alternative optimization algorithms beyond Adam, with
the goal of accelerating convergence. Finally, we aim to conduct a structured
analysis of the regularizer, with the objective of designing a functional that more
effectively captures the global structure of the target image, similar in spirit to
the GenTV regularizer, and to develop data-driven strategies for automatically
selecting the regularization parameter based on the input.
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