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Abstract. Disease prediction based on multimodal data is a critical yet
challenging task in healthcare, especially in intensive care units (ICUs)
where patients present complex clinical trajectories with multiple admis-
sions and comorbidities. Current multimodal learning approaches lack ef-
fective modeling of cross-modal complementary information, which leads
to suboptimal feature interactions. Besides, traditional methods that in-
corporate external knowledge graphs (KGs) often introduce noise and
computational complexity, due to the use of all one-hop neighbors within
the KGs. To address these challenges, we propose Knowledge-Enhanced
Complementary Information Fusion with temporal heterogeneous graph
learning (KCIF) for patient modeling. KCIF introduces a temporal het-
erogeneous admission graph (THAG) that integrates KGs to capture se-
mantic and temporal dependencies across admissions. It further employs
a complementary information fusion mechanism to leverage mutual en-
hancement between lab tests and medical events. Extensive experiments
on the MIMIC-III/IV benchmarks demonstrate that KCIF consistently
outperforms baselines, achieving improvements of over 2.5%–6.0% in w-
F1 score and 1.7%–4.5% in R@20 across multiple ICU disease prediction.
The code is available at https://github.com/Boaz-SCUT/KCIF.

Keywords: Multimodal Disease prediction · Complementary Informa-
tion · Temporal Admission Graph.

1 Introduction

The intensive care unit (ICU) is one of the most critical and complex envi-
ronments in the modern healthcare system, where patients require continuous
monitoring and timely intervention [14]. In this high-acuity environment, the
ability to accurately predict a patient’s clinical trajectory is extremely impor-
tant as it can enable timely medical intervention, optimize the allocation of
medical resources, and support effective clinical decision-making [5].
⋆ Corresponding authors: Ruxin Wang and Hao Zhang.
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Fig. 1. Performance comparison between unimodal and multimodal approaches. Blue
bars represent the unimodal (KGxDP [24]) method, while orange bars represent our
multimodal method.

However, developing robust predictive models for ICU patients poses sig-
nificant challenges, primarily due to the intrinsic complexity of clinical data.
ICU data covers a variety of modalities, including laboratory tests and other
medical events [14,21], from discrete diagnosis codes to time series information
[19,24,26]. Crucially, a significant proportion of ICU patients (>68%) actually
suffer from multiple comorbidities [16], and single-mode data are insufficient
to fully reflect the patient’s condition. This requires the integration of multi-
modal medical data to achieve more accurate predictions. Experimental results
have consistently demonstrated the superior performance of incorporating mul-
timodal knowledge as shown in Fig.1. Therefore, while significant progress has
been made in unimodal medical data analysis [3,12,11,24], there is an urgent need
to develop multimodal models that can effectively capture disease interactions
and their temporal evolution patterns.

Existing multimodal methods in this field can be roughly divided into two cat-
egories: (1) alignment-based methods [21,22,18,9], which use contrastive learn-
ing and self-supervised pre-training techniques to align different modalities in a
shared latent space; (2) Attention-based methods [15,25,26], which use feature
weighted concatenation or cross-attention to fuse multimodal representations.
However, these approaches cannot effectively model the inherent complementary
relationships between different modalities (e.g., how lab tests provide physiolog-
ical evidence for diagnosis and vice versa), resulting in suboptimal feature fusion
and limited predictive performance. In addition, to enhance the modeling ability
of medical events, researchers have introduced various external medical knowl-
edge, such as medical ontologies[2,13], knowledge graphs[20,24,1] and even large
language models (LLMs)[6,23,19]. However, these methods often incorporate all
one-hop neighbors within KGs, introducing significant noise and computational
complexity. Additionally, they focus mainly on static semantic connections while
overlooking the important temporal dependencies between patient admissions
that reflect the progression of patients’ health status [24].

To address these challenges, we propose Knowledge-Enhanced Complemen-
tary Information Fusion (KCIF) with temporal heterogeneous graph learning for
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disease prediction. Specifically, KCIF leverages a time-enhanced Transformer to
model discrete medical events, while constructing the THAG to capture both
semantic and temporal dependencies among medical events. For lab test se-
quence modeling, we employ a hierarchical Transformer to effectively capture
multi-scale temporal patterns at both intra-visit and inter-visit levels. In addi-
tion, KCIF extracts complementary information between lab tests and medical
events to improve patient modeling ability.

The contributions of this work are: (1) We construct THAG through external
KGs, which can effectively capture the semantic and temporal dependencies
between admission histories. (2) We develop specialized constraints to extract
complementary information from lab test and medical events, enabling more
comprehensive patient representation learning. (3) We conducted experiments
on the MIMIC-III/IV datasets and the results demonstrated the superiority of
KCIF and the effectiveness of each module.

2 Methodology

2.1 Problem Formulation

Given a patient p with static demographic xp
static = [xp

a, x
p
g, x

p
r ], where xp

a, xp
g,

and xp
r represent the patient’s age, gender, and race respectively. For nota-

tional simplicity, we will omit the superscript p in the subsequent formula-
tions. The longitudinal medical history is formalized as a temporally-ordered
sequence of hospital admissions A = {At1 , At2 , ..., AtT }, with corresponding
timestamps t = {t1, t2, · · · , tT }. Each admission Ati = [Dti , Pti ,Mti ;Lti ] con-
tains 1) medical events: diagnostic codes Dti = {d(ti)c }|Dti

|
c=1 , procedural codes

Pti = {p(ti)c }|Pti
|

c=1 and medicine codes Mti = {m(ti)
c }|Mti

|
c=1 , where | · | repre-

sents the number of elements in the set. 2) lab tests Lti . The medical events
are coded by the standardized ICD-9 coding system1. Therefore, the complete
medical events of this patient can be denoted as ME = {[D;P ;M ]}, where
D,P,M = {Dti}

tT
ti=1, {Pti}

tT
ti=1, {Mti}

tT
ti=1. The lab tests are represented as a

temporal sequence L = {Lt1 , Lt2 , . . . , LtT }, where Lti = [l1ti , l
2
ti , · · · , l

wti
ti ], where

wti denotes the number of discrete time windows in ti-th admission, ljti stands
for the lab test results in j-th time window.

To better capture the complex relationships between clinical events, we repre-
sent the admission history as a temporal heterogeneous admission graph (THAG)
G = (V,E). The node set V consists of admission event Va = {at1 , at2 , · · · , atT },
diagnosis {vd|vd ∈ D}, procedure {vp|vp ∈ P}, and medication {vm|vm ∈ M},
where each ati represents the admission event itself (rather than the medical
records within that admission). The edge E contains three types of relation-
ships: 1) Etime stands for the temporal sequence between adjacency admissions;
2) Ehas stands for the association between admissions and their corresponding

1 https://archive.cdc.gov/www_cdc_gov/nchs/icd/icd9cm.html
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Fig. 2. The architecture of KCIF. (MHA: Multi-Head Attention, MLP: Multi-Layer
Perceptron, HGAT: Heterogeneous Graph Attention Network)

medical events; 3) Erel stands for the semantic relationships between medical
events derived from external KGs. These edges are defined in Eq.(1):

Etime = {(ati , ∆ti,ti+1
, ati+1

) | ati , ati+1
∈ Va},

Ehas = {(ati , rvk,ati
, vk) | ati ∈ Va, vk ∈ ME},

Erel = {(vhead, rh,t, vtail) | vhead, vtail ∈ ME, rh,t ∈ KG},
(1)

where ∆ti,ti+1
denotes the time interval between adjacency admissions, rvk,ati

indicates ti-th admission has medical event vk. rh,t represents the semantic re-
lationship between medical events as defined in the KGs.

2.2 Medical Event Modeling

The architecture of the proposed model is depicted in Fig.2. We model discrete
medical events through time-aware attention (T-Attention), enabling the learn-
ing of admission-level representations. Specifically, the representation of ti-th
admission Hti is computed as Eq.(2):

Hti = T-Attention(ME, ti) = Self-Attention(Fme(ME) · FT (∆ti,T )), (2)

where Fme(·) represents the learnable medical events embedding mapping, and
FT (·) denotes a non-linear function encoding the time difference between cur-
rent and last admission, with ∆ti,T = tT − ti. To capture long-term depen-
dencies in the admission sequence, we develop a time-enhanced Transformer
(T-Transformer) as Eq.(3):

HME = T-Transformer(Ht, t) = Transformer(Ht, F
′
T (∆ti,i+1) + Pos), (3)

where Ht = {Ht1 , Ht2 , · · · , HtT } is the admission-level representations from
Eq.(2). F ′

T (·) is a non-linear function that encodes the temporal interval between
adjacent admissions, ∆ti,i+1 = ti+1 − ti. Pos denotes the positional embedding
of each admission. Finally, we use multihot encoding to process the patient’s
static demographic to obtain HS = multi-hot(xstatic), and then concatenate it
with HME to obtain the medical event level representation HP = [HME ;HS ].
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2.3 Temporal Heterogeneous Admission Graph Modeling

We introduce the Node-Edge-Type aware heterogeneous graph attention network
(NET-HGAT) to model THAG G = (V,E). Node embedding of vk ∈ V is
initialized by concatenating the entity embedding and type embedding, that
is h

(0)
vk = [Fe(vk);Ftype(Φ(vk))], where Fe(·) and Ftype(·) map nodes and their

types to corresponding embedding spaces. Φ(·) maps nodes to their types. To
capture dynamic entity interactions, we design the multi-layer heterogeneous
GAT (HGAT), where the embedding of vk at layer l + 1 is updated as Eq.(4):

h(l+1)
vk

= h(l)
vk

+ σ

 ∑
u∈N (vk)

αu,vk
Wh(l)

u

 , (4)

where σ(·) is a non-linear activation function, αu,vk is calculated by integrating
the node embeddings and edge semantics of nodes vk and u, as shown in Eq.(5):

αu,vk =
exp(Fv(W1h

(l)
vk ,W2h

(l)
u , Fedge(Ψ(u, vk))))∑

u∈N (vk)
exp(Fv(W1h

(l)
vk ,W2h

(l)
u , Fedge(Ψ(u, vk))))

, (5)

where Fv(·) is a learnable function that integrates node and edge information to
calculate attention weights, W1 and W2 are the transformation matrix, Ψ(·, ·)
maps edges to their types, and Fedge(·) embeds edge types. After applying L

layers, we derive the patient graph level representation HG = 1
|V |

∑
vk∈V h

(L)
vk .

Moreover, to ensure semantic alignment between medical event level em-
beddings HP and graph level embeddings HG, we design a contrastive learning
objective as Eq.(6):

LC = −
∑
m

[
log

exp(smm)∑
n exp(smn)

+ λ log
exp(smm)∑
n ̸=n exp(smn)

]
, (6)

where smn = sim(H
(m)
P , H

(n)
G ) measures the cosine similarity between HP , HG

of patient m and n. λ controls the weight of negative sample pairs.

2.4 Lab Tests (LT) Modeling

Lab tests exhibit complex temporal dependencies at both intra-admission and
inter-admission levels, which can provide quantitative indicators that comple-
ment discrete medical events by capturing clinical changes and early disease sig-
nals not yet recorded in medical codes. To effectively capture these multi-scale
patterns, we propose a hierarchical Transformer (H-Transformer) for lab test
modeling. Given the lab test sequence for ti-th admission Lti = [l1ti , l

2
ti , · · · , l

wti
ti ],

we first employ a admission-level Transformer (A-Transformer) to model the
temporal relationships between lab tests within the same admission, as Eq.(7):

HLTti
= A-Transformer(Lti) = Transformer(l1ti , l

2
ti , · · · , l

wti
ti ). (7)
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We then aggregate the encoded admission-level representations of all admit-
ted patients HLTt

via a patient-level transformer (P-Transformer), as Eq.(8):

HLT = P-Transformer(HLTt
) = Transformer(HLTt1

, HLTt2
, · · · , HLTtT

), (8)

where HLT is the final representation of lab tests. Transformer(·) represents the
vanilla encoder layer of Transformer[17] with Lti and HLTt

as input.

2.5 Cross-Modal Complementary Information Learning

The basic principle of complementary information extraction is exploiting the
deep interactions between modalities. Given HP , HG, and HLT , the inter-modal
interactions are captured using multi-head attention (MHA) followed by mean
pooling, as Eq.(9):

Hv = Mean(Multi-HeadAttention(HP , HG, HLT )). (9)

To ensure that the model captures truly valuable complementary information.
We impose a soft orthogonality constraint, as defined in Eq.(10):

Lorth = cos(Hv, HP )︸ ︷︷ ︸
Lorth1

+cos(Hv, HG)︸ ︷︷ ︸
Lorth2

+cos(Hv, HLT )︸ ︷︷ ︸
Lorth3

, (10)

where cos(·, ·) is the cosine similarity between Hv and all modal representations.
Moreover, the loss Lpred based on the fused representation [HP ;HG;Hv] is

minimized to ensure the best performance of the model. Lpred represents the
binary cross entropy or multi-class cross-entropy loss, depending on the specific
clinical prediction task. The final total loss function is given by Eq.(11):

Ltotal = Lpred + λ1Lorth + λ2LC . (11)

3 Experimental Setup

3.1 Datasets and Baselines

Following prior studies [3,11,12,24], we evaluate KCIF on two widely used bench-
marks: MIMIC-III [8] and MIMIC-IV [7], ensuring fair and consistent compar-
isons. Furthermore, we strictly adhere to the patient cohort selection criteria
established in [24,10]. To accommodate the proposed approach, we further filter
the data by lab tests. For lab test extraction, we followed [4] and selected 17 clin-
ically significant lab tests. We then segmented them into 12-hour time windows
within each admission to effectively capture the temporal patterns. After pre-
processing, the MIMIC-III contains 7,073 patients, with 5,617/463/993 patients
for train/dev/test, and MIMIC-IV contains 3,556 patients, with 2,876/335/345
patients for train/dev/test. For quantitative evaluation, we adopt the same met-
rics as in paper[24,10]: w-F1, R@k (k = 10, 20) for multi-disease prediction, and
F1, AUC for binary disease prediction.
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Table 1. Performance comparison on MIMIC-III dataset. (%)

Models Multi-Disease Cardiovascular Hypertension Heart Failure
w-F1 R@10 R@20 w-F1 R@10 R@20 AUC F1 AUC F1

DIPOL 19.35 24.98 34.02 48.37 66.69 77.18 74.90 78.26 82.08 70.35
RETAIN 20.69 26.13 35.08 52.10 72.89 81.97 80.24 77.08 83.21 71.32
HiTA 21.15 26.02 35.97 52.74 73.15 82.54 78.20 81.74 82.77 71.93
KGxDP 31.35 30.98 41.29 53.55 70.99 80.54 79.83 81.70 86.57 74.74
MMUGL 26.40 - 41.54 - - - - - - -
GraphCare 14.80 - 29.97 - - - - - - -
KCIF 32.41 34.63 46.10 54.05 74.57 83.69 89.23 94.94 87.52 75.74

Table 2. Performance comparison on MIMIC-IV dataset. (%)

Models Multi-Disease Cardiovascular Hypertension Heart Failure
w-F1 R@10 R@20 w-F1 R@10 R@20 AUC F1 AUC F1

DIPOL 24.34 22.66 30.43 55.64 56.90 63.11 76.42 79.81 86.70 76.67
RETAIN 27.45 26.60 35.60 57.09 61.09 66.79 77.13 80.41 90.11 79.37
HiTA 26.41 29.51 39.30 56.58 72.19 80.86 84.84 88.33 85.97 73.29
KGxDP 29.45 30.64 39.81 57.24 61.43 66.83 87.04 89.40 93.00 78.49
KCIF 31.99 31.20 41.59 57.90 72.52 81.64 88.22 90.99 94.13 84.04

We evaluate KCIF against several baselines, including sequence-based mod-
els such as RETAIN[3], Dipole[12], and HiTANet[11], which employ sequence
models and attention mechanisms for admission history modeling but do not in-
corporate medical knowledge. Additionally, we compare with graph-based models
like KGxDP[24], MMUGL[1], and GraphCare[6], which integrate external
KGs or large language models (LLMs) to enhance medical event representa-
tion. Due to reproducibility constraints, we report the results of GraphCare and
MMUGL as presented in paper[1].

The layer number of NET-HGAT is set to 2, the learning rate is set to 1e-
4, and the batch size is set to 16. The output dimension of all Transformer is
768. We conducted grid search for loss function weights, and finding optimal
performance with λ1 = 0.01, λ2 = 0.05. The KG used in this paper is SNOMED
CT 2, which is an authoritative, widely-adopted open-access medical KG.

3.2 Main Results

Tables 1 and 2 present the evaluation results of KCIF against baselines across
three clinical prediction-level tasks: 1) Multi-disease prediction, which is
the most challenging scenario involving classification among thousands of po-
tential diseases (4,880/5,890 for MIMIC III/IV), KCIF demonstrates substan-
tial improvements over all baselines. It achieves w-F1 of 32.41% on MIMIC-III
and 31.99% on MIMIC-IV, which outperforms the strongest baseline KGxDP by
1.06% and 2.54%. The R@20 shows even more significant improvements of 4.81%
2 https://www.nlm.nih.gov/healthit/snomedct/index.html
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Table 3. Ablation study results on MIMIC-III and MIMIC-IV (%).

Ablation Module MIMIC-III MIMIC-IV
w-F1 R@10 R@20 w-F1 R@10 R@20

w/o THAG 27.96 30.19 40.67 30.07 30.75 40.46
w/o LC 31.47 33.93 44.77 30.77 30.55 39.46
w/o Lorth 30.70 33.51 44.35 30.91 29.69 38.50
KCIF 32.41 34.63 46.10 31.99 31.20 41.59

and 1.78% on the respective datasets compared to the best-performing baselines.
2) Cardiovascular disease prediction, which focuses on 58 cardiovascular-
related diseases, KCIF maintains its superiority with w-F1 of 54.05% on MIMIC-
III and 57.90% on MIMIC-IV. The R@20 reaches 83.69% and 81.64% on the
respective datasets, with improvements of 1.15% and 0.78% over the best base-
lines. 3) Binary classification tasks, which predicts whether a patient has
a certain disease. KCIF demonstrates remarkable performance gains. On hy-
pertension prediction, KCIF achieves AUC improvements of 9.0% (MIMIC-III)
and 1.18% (MIMIC-IV) over the best baselines, with even more pronounced F1

score improvements of 13.24% and 1.59%. For heart failure prediction, KCIF
reaches AUC values of 87.52% and 94.13% on the respective datasets, out-
performing the best baselines by 0.95% and 1.13%. Notably, KCIF also out-
performs recent knowledge-enhanced methods such as KGxDP[24], MMUGL[1],
and GraphCare[6], indicating that simply incorporating external knowledge is
not enough, even if some of this knowledge is provided by LLM (GraphCare).
In contrast, KCIF’s dual focus on both temporal graph modeling and comple-
mentary information fusion enables consistent performance improvements across
all experimental settings. The consistent performance improvement in all tasks
demonstrates the effectiveness of KCIF, which can effectively model complex
disease interactions and capture important semantic relationships between med-
ical events, and extract complementary information from different modalities
through THAG.

3.3 Ablation Studies

We conduct comprehensive ablation experiments to evaluate the contribution
of each component in the KCIF, and the results are shown in Table 3. The re-
sults show that the removal of THAG leads to the most substantial performance
degradation across all metrics (w-F1 drops by 4.45% on MIMIC-III, 1.92% on
MIMIC-IV), demonstrating its pivotal role in encoding external medical knowl-
edge and capturing temporal dependencies. Ablating the contrastive loss LC

results in moderate performance decreases (0.94% and 1.22% in w-F1), vali-
dating its effectiveness. Similarly, removing the orthogonality constraint Lorth

causes performance to drop by 1.71% and 1.08% on respective datasets, con-
firming its importance in extracting complementary information that cannot be
derived from any single modality.
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4 Conclusion

In this paper, we propose KCIF, a novel framework for ICU disease prediction
that effectively integrates multimodal clinical data and external medical KGs.
By constructing a THAG, our approach successfully captures both semantic and
temporal dependencies across admission history. The proposed complementary
information fusion mechanism enables lab tests and medical events to reinforce
each other, leading to better patient modeling. Extensive experiments on the
MIMIC-III/IV benchmarks demonstrate the effectiveness of KCIF.
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