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Abstract. Precise nuclei segmentation is crucial in histopathology but
remains challenging due to variable tissue types, staining protocols, and
imaging conditions. Traditional deep neural networks often perform in-
consistently when presented with data distributions not seen during
training. Existing approaches typically process multi-scale features se-
quentially but lack mechanisms to explicitly enforce robustness against
distribution shifts. To address this, we propose a novel framework that
integrates hierarchical feature learning with associative memory to en-
hance model adaptability. First, we extract multi-layer embeddings from
an image encoder, then process them in reverse layer order (from deepest
to shallowest) using Liquid Neural Network (LNN). This design allows
the model to capture global features initially and then refine them with
increasingly localized information. The image encoding and the LNN
encoding is then concatenated in hidden space and passed through Hop-
field layer that stabilizes and stores relevant patterns. This effectively en-
hances domain-invariant representations by filtering out spurious correla-
tions. Our OOD experiments on nuclei segmentation benchmark datasets
show that our approach achieves average improvement of 16.35% over
baseline models. Our code will be released at https://github.com/CVPR-
KIT/OOD-Nuclei-Segmentation-via-LNNs-with-MHN.

Keywords: Nuclei Segmentation - Instance Segmentation - Out-of-
Distribution.

1 Introduction

Nuclei segmentation in histopathology images is a critical task for quantitative
tissue analysis and diagnosis in digital pathology [17]. By delineating individual
cell nuclei, automated systems can extract key morphological features — such as
nuclear size, shape, and density — that help in disease gradation and prognosis
[20]. Despite significant progress with modern image segmentation techniques,
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accurate segmentation of nuclei remains challenging [6]. This is due to high vari-
ability in nuclear appearance and variability induced during slide preparation
and image acquisition. Due to this, models often encounter out-of-distribution
(OOD) data, where histology images differ from the training set in stain inten-
sity, tissue type, or scanner settings. These differences can lead to significant drop
in segmentation performance on external datasets and require re-training [20].
The data variations may include - minor staining deviations, tissue-specific mor-
phology, different image and color profiles of acquisition devices. These problems
give rise to domain shifts between training (source domain) and deployment (tar-
get domain) data. Such OOD scenarios pose a fundamental challenge: a model
trained on one distribution of nuclei images may fail to generalize to unseen
distributions of similar nuclei images, yielding incorrect segmentation and un-
dermining its utility in real-world applications.

There have been continuous research and advancement in fully automated
segmentation of nuclei regions. While semantic segmentation is used to calculate
nuclei and disease area, instance segmentation identifies each nuclei as a sep-
arate entity within an image, allowing for detailed morphological studies [19].
For instance, fully convolutional architectures like U-Net [23] and its variants,
have achieved excellent results in delineating nuclei when training. Despite these
task-specific models displaying acceptable performance on the seen data from
training distribution, they show difficulty in handling data from different distri-
butions, especially for the nuclei with different shapes and stain environments
[9,14]. Several strategies have been explored to improve robustness in nuclei
segmentation. Normalization-based methods adjust color and intensity distribu-
tions like stain normalization [26, 13] was applied to reduce inter-slide variability.
Augmentation-based methods [27] apply stain-jitter and geometric transforma-
tions to introduce synthetic variability during training to expose the model to
a broader input distribution. While these techniques can partially mitigate dis-
tribution gaps, they often require careful tuning and can introduce artifacts or
inconsistent improvements. Unsupervised domain adaptation frameworks have
also been proposed to align feature representations between a labeled source
domain and an unlabeled target domain [28]. Approaches such as adversarial
feature alignment [18] or image-to-image translation [29] can boost performance
on a specific target domain, but they demand access to target data and require
retraining. But, even then, it may not generalize to arbitrary unseen domains.
More recently, adapting or utilizing foundational segmentation models like the
Segment Anything Model (SAM) [16] have been proposed, aiming to provide uni-
versal segmentation capabilities across diverse and potentially out-of-distribution
image domains, thereby motivating further exploration of generalizable segmen-
tation methods [2, 25].

In this paper, we pursue a different direction to tackle OOD nuclei seg-
mentation. We propose a novel network structure that leverages the adaptive
dynamics of Liquid Neural Networks (LNNs) [12] and the associative memory
of modern hopfield networks (MHN) [22]. LNNs are a class of continuous-time
recurrent models inspired by neuromorphic principles, which maintain flexible,
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Fig. 1. The overall architecture of the proposed method

time-varying internal dynamics that can adapt to changing inputs even after
training [5]. Unlike conventional feed-forward networks with fixed learned pa-
rameters, LNNs can adjust their behavior based on input sequences or condi-
tions, effectively filtering out irrelevant features and focusing on salient patterns.
This adaptivity suggests that LNN-based image encoders could better handle
domain shifts, as demonstrated recently in [1]. We employ a modern hopfield
layer that stores a set of representative nucleus feature embeddings learned dur-
ing training. During inference, the MHN layer associates incoming features with
the closest stored prototypes, essentially performing a content-based retrieval of
familiar nuclear patterns. The retrieved patterns then influence the decoder’s
predictions, helping to correct segmentation outputs when the input exhibits
OOD characteristics.

2 Methods

The overall architectural pipeline is shown in Fig. 1. Our proposed methodology
first passes the input image through an encoder to obtain image encodings and
its corresponding feature maps at multiple scales (from coarse high-level features
to fine-grained details). These multi-scale feature embeddings are then treated
as a sequential input to the LNN, in order from coarsest to finest scale. At
each step, the LNN ingests the feature map of that scale and updates its hidden
state. In this way, global context from low-resolution features is gradually refined
by incorporating higher-resolution details over time. Next, we concatenate the
image embeddings and the LNN output into a shared hidden representation and
feed this into a MHN layer. Finally, the enriched features are decoded to generate
the instance segmentation map.

2.1 LNN Feature Encoder

The central idea behind our LNN feature encoder is to mimic hierarchical vi-
sual reasoning. When analyzing a scene, humans first grasp the global context
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and then progressively focus on finer details. Our LNN is designed to replicate
this process by sequentially integrating multi-scale features - from the coarsest
(most contextual) to the finest (most detailed). This temporal processing allows
the model to build a rich, context-aware representation that is dynamically re-
fined as more localized information becomes available. We implement the LNN
using a Closed-form continuous-time model, specifically the Continuous-time
forward-constraint (CfC) cell introduced in [11]. The CfC is a four-layer LNN
architecture that provides numerical approximation of the closed-form solution
of LTCs, avoiding the need for iterative ODE solvers. This makes it computa-
tionally efficient while retaining the expressiveness of continuous-time dynamics
[5].

In our proposed method, the CfC cell serves to sequentially process the multi-
scale encoder features. Formally, let F'*, F2,...  FT denote the encoder feature
maps from T scales (with F! the coarsest scale and FT the finest). Then we
project each F' to a common hidden dimension (via 1 x 1 convolution), so
that all inputs to the LNN have the same dimension. We flatten each projected
feature map szmj € RBXDxHixWe along its spatial dimensions into a sequence
z; € REXUHWIXD an( feed it to the CfC cell.

A core characteristic of CfC cells is the closed-form gating function that
blends multiple learned transformations of the input (z,I) based on a parame-
terized function f multiplied by a continuous-time variable ¢. We can write the
CfC update equations as:

2(t) = a(—f(x,f;af)t) © g(2,1;0,) + [1 — o(—f (2, 1;0y) t)} ® h(z, I;04),

(1)
where o(-) is the sigmoid function; f(-;6f), g(-;6,), and h(-;65) are neural func-
tions with learnable parameters 6f,8,,0,; I denotes the current input (multi-
scale feature map); and © is element-wise multiplication. Intuitively, f deter-
mines how quickly z(¢) transitions from the transformation g to the transforma-
tion h, as it multiplies the time variable ¢ (set to 1 for equally spaced encoder
scales) in the sigmoid argument. At large positive values, the sigmoid term goes
to 1, favoring g, whereas at large negative values, it switches to h. This gating
mechanism ensures a stable closed-form update of the hidden state, effectively
capturing instantaneous dynamics of the system. After we get the output from
the LNN we normalize it via {5 normalization. Fig. 2 shows the CfC network
used in the proposed methodology.

2.2 Hopfield Layer

While the LNN provides adaptive feature integration, large domain shifts could
still cause it to produce anomalous or inconsistent representations [12]. To ad-
dress this and enforce representational stability, we introduce a Modern Hopfield
Network layer that functions as an associative memory. If the input feature vec-
tor deviates from known patterns, the Hopfield layer pulls it towards the closest
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Fig. 2. (a) represents closed-form liquid network (CfC) used in the proposed model.
The inter, command and motor neurons are made up of using the CfC cell and is shown
in (b). g and h are two non-linear layers that control the state of the system and f
determines how quickly x(t) transitions between them. I, is an external input. f,g,
and h have a shared backbone that is parameterized by 67,6, and 6 as defined in
equation 1.

stable memory, effectively correcting anomalies before the decoding step. In our
proposed method, the hopfield layer learns a set of prototype feature patterns
during training from a shared space. The output from the image encoder and
the output from LNN are projected onto a shared space and are then concate-
nated before passing through the Hopfield layer. Previous work from [15] shows
that MHN excels when projecting input representations into a shared space for
similarity-based comparison. We use the Hopfield Layer implementation to learn
patterns from the concatenated feature set.

Let p1,p2,...,pym be the learned patterns (memory vectors) stored in the
Hopfield layer, and let ¢ = hp be the query vector. The Hopfield retrieval is
an associative lookup that finds the memory pattern closest to ¢ in the feature
space. This can be expressed as a weighted average of all stored patterns, where
weights are given by a softmax over their similarity to the query:

-y <zke}:pexp< <q,pk>>>pj7 @

(r(g,p;))

where (g, p;) is the similarity between the query and pattern j, and & is a
scaling factor that controls the sharpness of the association. This update rule is
essentially equivalent to the attention mechanism used in Transformers, and in-
deed the MHN can be seen as performing a single-step attention-based memory
retrieval. The result r is the recalled pattern most consistent with ¢q. This en-
riched representation is then forwarded to the decoder. By injecting the hopfield
associative memory, the network is encouraged to produce features that match
learned prototypical patterns of nuclei, which improves robustness especially un-
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der out-of-distribution conditions — if the LNN produces an anomalous feature
sequence, the MHN layer will pull it towards the closest stable pattern.

3 Experiments and Results

3.1 Dataset

We train our model on the PanNuke dataset [7], which offers a large-scale, diverse
collection of nuclei instances across 19 different tissue types. PanNuke contains
7,904 H&E images with 205,343 annotated nuclei. This diversity and scale, with
nuclei from numerous organs and pathologies, provide a strong foundation for
learning robust multi-class segmentation. For evaluation, we employ three out-
of-distribution test datasets (not seen during training) - CryoNuSeg [21], CoNIC
[24] and CoNSeP [9]. CryoNuSeg introduces a significant domain shift as nuclei
in frozen tissue sections often have blurred morphology and staining artifacts
due to the freezing process. Key challenges in CoNIC include extremely high
cellularity (dense clusters of nuclei) and heterogeneity across different clinical
data sources, which tests the robustness of segmentation models to variations
in stain and tissue preparation. On the other hand, CoNSeP images represent
typical formalin-fixed paraffin-embedded (FFPE) colon tumor sections, with di-
verse appearance of nuclei and abundant cell overlapping. Together, these test
sets span a range of tissue types and different preparation protocols, provid-
ing a rigorous evaluation of out-of-distribution segmentation performance of our
approach.

3.2 Implementation

Our approach is implemented in PyTorch and trained on a single NVIDIA RTX
A6000 GPU. For consistency, all dataset images are resized to 256 x256 pixels
before feeding into the network. We train the model for 50 epochs using the
Adam optimizer with learning rate of 1 x 10~* with a batch size of 16. We
adopt loss function similar to [10] for our instance segmentation task. This is
a composite loss that combines multiple terms to handle per-pixel segmenta-
tion accuracy and instance separation simultaneously. We use a combination of
Lovasz-Softmax loss [4] with seed and smooth loss. The Lovasz-Softmax imple-
mentation sorts pixel errors and computes a piecewise linear extension of the
IoU loss that helps the network to maximize overlap between predicted masks
and ground truth. In order to encourage correct instance detection, we include
seed loss, where we calculate the deviation of the centroids from ground truth
seed masks. To enforce spatial consistency in the segmentation output, we add
a smoothness regularization. This loss penalizes abrupt changes in the predicted
mask probabilities between neighboring pixels. During training of LoRA-SAM,
the SAM backbone was kept frozen while only the LoRA parameters were op-
timized. Our LNN and MHN components were trained along with the LoRA
parameters while training the models.
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Table 1. Performance comparison of various models across OOD CryoNuSeg, CoNIC,
and CoNSep datasets. Frozen models were used for SAM and MedSAM as denoted by
*. Ours indicates LoRA-SAM w/ LNN and MHN.

Datasets CryoNuSeg CoNIC CoNSep
Models |Dice AJI PQ HD |Dice AJI PQ HD |Dice AJI PQ HD
U-Net 18.31 7.44 5.16 360.37|19.16 8.17 6.91 355.17|17.29 7.96 5.68 381.55
nnU-Net 24.79 18.82 13.68 244.98|21.46 18.52 10.30 322.67|30.32 21.25 14.61 218.17
U-Net3+ 41.70 34.95 21.52 151.60{40.64 37.88 22.70 158.19|36.68 28.83 14.77 193.34
SAM* 66.93 41.64 30.11 72.59 |67.53 43.29 31.65 80.58 |73.49 56.12 45.30 62.11
MedSAM* | 75.79 53.29 42.44 51.18 |71.37 51.44 40.08 59.77 | 76.23 55.87 44.56 77.09
HoVer-NeXt| 76.90 55.36 46.73 50.24 |72.64 52.57 41.14 61.23 |77.17 57.21 47.23 76.37
MedOoD 78.48 56.14 48.12 47.06 |73.72 54.06 43.25 54.40|79.12 58.95 49.44 65.58
LoRA-SAM | 81.51 63.19 55.31 34.08 |78.15 60.52 51.34 40.01|84.29 73.14 61.61 28.53
Ours 93.22 81.25 69.13 12.26|89.09 76.88 66.32 14.55|95.40 84.71 74.67 8.12

We evaluate segmentation performance using four metrics: Dice Score, Ag-
gregated Jaccard Index (AJI), Panoptic Quality (PQ), and Hausdorfl Distance
(HD). Dice focuses on overall pixel overlap, AJI on per-instance segmenta-
tion quality (with penalties for instance assignment errors), PQ on combined
detection-segmentation efficacy, and HD on boundary precision. By analyzing all
four, we obtain a comprehensive assessment of our model’s segmentation quality
and robustness. In particular, Dice and AJI quantify general segmentation ac-
curacy, PQ stresses the importance of correct instance count and segmentation,
and HD ensures that even fine boundary details are evaluated.

Table 2. Effectiveness of proposed method across models on OOD CryoNuSeg dataset.
Ours indicates Baseline w/ LNN and MHN.

Dice AJl PQ HD
Models Baseline Ours|Baseline Ours|Baseline Ours|Baseline Ours
U-Net 18.31 51.43| 7.44 32.04| 5.16 26.72| 360.37 77.64
nnU-Net 24.79 79.36| 18.82 48.82| 13.68 37.38| 244.97 46.67

U-Net3+ 41.70  86.79| 34.95 60.03| 21.52 51.66| 151.67 22.42
LoRA-SAM| 81.51 93.22| 63.19 81.25| 55.31 69.13| 34.08 12.26

shows the qualitative results of our proposed model. It can be observed that
using LNN and MHN provides better performance on OOD datasets.

3.3 Results

We compare our proposed method against several baseline segmentation methods
to demonstrate its effectiveness. The baselines include both conventional CNN-
based architectures and recent transformer-based segmentation models. The U-
Net based models represent established, task-specific segmentation pipelines,
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Fig. 3. Qualitative comparison of OOD segmentation performance of our proposed
methodology with their baselines.

while SAM and its adaptations represent recent foundation model approaches
leveraging transformers and prompt-based segmentation. Table 1 summarizes
the performance of all methods (baselines and ours) on the three test datasets:
CryoNuSeg, CoNIC, and CoNSeP. Overall, our LNN+MHN implmentation on
LoRA-SAM (rank=512) demonstrates superior performance across all metrics
and datasets. Not only the conventional models like U-Net struggle against the
OOD datasets, foundational models too require fine-tuning to achieve compa-
rable performance. We also compare our method with domain generalization
baselines like HoVer-NeXt [3] and Med-OoD [8], where our method performed
better in comparison. Furthermore, Table 2 shows that our proposed methodol-
ogy achieves average performance increase of 36% in terms of dice scores, 24% in
terms of AJI and 22% in terms of PQ over baseline models. In contrast to these
significant gains on OOD data, the performance improvement over the baseline
was marginal on the in-distribution dataset.

Table 3. Effect of LNN and MHN on LoRA-SAM model performance with CryoNuSeg
dataset.

Row|LNN/MHN Dice| AJI| PQ | HD
1 - - |81.51(63.19|55.31|34.08
2 v - 182.36(65.74|55.58|33.62
3 v’ 184.79/69.41/58.93|26.17
4 v v' 193.22|81.25(69.13|12.26

Table 3 shows the ablation study results. It shows the effects of LNN and
MHN on LoRA-SAM model when inferenced with OOD CryoNuSeg dataset.
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The results show that there is an increase in model performance when using
LNN alone of about 1.03%. But when used with MHN the average performance
in creases by 5.26%. However, when both LNN and MHN are used together, the
performance of the model increases by 16.35% on average. This indicates that
LNN and MHN complement each other. The LNN enhances feature representa-
tion and together with image encodings that provide segmentation detail to the
MHN layer, the models show huge improvement in performance measures. Fig 3

4 Conclusion

In this study, we presented a novel framework for out-of-distribution nuclei seg-
mentation that combines the adaptive dynamics of LNNs with the associative
memory of a modern hopfield network. By processing hierarchical image features
through time-aware liquid dynamics and stabilizing them with learned feature
patterns, our approach achieves superior segmentation accuracy across diverse
histopathology datasets. Extensive experiments demonstrate that our method
consistently outperforms strong baselines, highlighting its robustness to domain
shifts. Our proposed model increases the model performance by 16.35% high-
lighting the effectiveness of our approach. The major limitations include high
training time due to LNN iterations which we plan to mitigate in future studies.
Our work offers a promising direction for building more adaptable and general-
izable segmentation models in computational pathology.
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