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Abstract. Accurately predicting post-stroke motor impairment remains a chal-

lenge due to the complexity of functional recovery and its association with neu-

roimaging biomarkers. This study presents a deep learning (DL) framework that 

integrates Magnetic Resonance Imaging (MRI)-based measures such as Diffu-

sion Tensor Imaging (DTI) metrics—fractional anisotropy (FA), mean diffusiv-

ity (MD), radial diffusivity (RD), and axial diffusivity (AD)—along with white 

matter (WM) and gray matter (GM) intensities to classify upper limb motor func-

tion. Unlike previous approaches, the proposed model directly extracts whole-

brain volumetric features without predefined region-of-interest constraints. Fea-

ture representation is enhanced using residual connections, attention mecha-

nisms, and Global Average Pooling (GAP), improving classification perfor-

mance while maintaining computational efficiency. The ensemble framework 

combines six independently trained models to optimize multi-modality integra-

tion. The results demonstrate that the WM+FA combination achieved the highest 

accuracy (0.97), outperforming the full ensemble model (0.96). These findings 

exceed the performance reported in prior studies, emphasizing the effectiveness 

of microstructural and structural biomarkers in motor recovery prediction. This 

optimized DL framework has the potential to improve post-stroke motor impair-

ment classification, supporting early rehabilitation planning, and personalized 

treatment strategies.  

Keywords: Deep Learning, Diffusion Tensor Imaging, Feature Fusion, Magnetic 

Resonance Imaging, Multimodal Learning, Upper-limb Motor Impairment.  
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1 Introduction 

Stroke is a leading cause of death and disability worldwide, causing motor, cognitive, 

and speech impairments due to disrupted cerebral blood flow [1]. Despite advances in 

acute care, effective rehabilitation remains crucial [1-2]. Tools like the National Insti-

tutes of Health Stroke Scale (NIHSS) and Fugl-Meyer Assessment (FMA) assess clin-

ical function but overlook neurobiological mechanisms, leading to variable outcomes 

based on brain damage and individual differences [3-9]. 

Neuroimaging biomarkers, particularly diffusion tensor imaging (DTI) metrics and 

structural features of white matter (WM) and gray matter (GM), are crucial for predict-

ing motor recovery after stroke [3, 5-11]. DTI assesses WM integrity, with metrics like 

fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial 

diffusivity (AD) reflecting microstructural damage and recovery [5,7-8]. Additionally, 

GM structures such as the primary motor cortex, supplementary motor area, and pre-

motor cortex are linked to functional recovery [9]. Combining WM and GM markers 

enables a comprehensive assessment of recovery potential. 

Traditional models like PREP [12] and PREP2 [13] combine clinical scores with 

transcranial magnetic stimulation and Magnetic Resonance Imaging (MRI) features. 

While clinically interpretable, they rely on predefined biomarkers and expert-driven 

feature selection, limiting their ability to capture brain reorganization. Their moderate 

accuracy (0.70-0.80) suggests that clinical measures alone may not ensure robust pre-

diction. As summarized in Table 1, recent studies explored multimodal neuroimaging 

with machine learning (ML) using T1-weighted (T1w) MRI, functional MRI (fMRI), 

diffusion-weighted imaging (DWI), and corticospinal tract (CST) integrity [14]. While 

promising, most rely on traditional statistical methods, limiting their ability to model 

complex biomarker interactions. Tozlu et al. [15] reported high regression (R²: 0.70–

0.91) but low classification performance (area under the curve, AUC: 0.50–0.63), while 

Rehme et al. [16] showed resting-state fMRI improved classification accuracy (Acc: 

0.83–0.88) compared to lesion-based diffusion MRI with lower performance (0.74). 

Rondina et al. [17] used Gaussian Process Regression (GPR) and Support Vector Ma-

chine (SVM), achieving correlations of 0.68–0.83, highlighting the importance of fea-

ture selection. However, most ML models rely on predefined biomarkers and expert-

driven feature selection, limiting adaptability and generalizability. Deep learning (DL) 

models, such as multi-channel 3D-Convolutional Neural Networks (CNNs) integrating 

DTI maps, WM and GM integrity, and demographic data, achieved the highest perfor-

mance (Acc: 0.92, AUC: 0.92) [18], though challenges in balancing multi-modal fea-

ture contributions and preventing modality dominance remain major challenges. 

Accurately predicting post-stroke motor impairment remains challenging due to the 

complex interactions between neuroimaging biomarkers and functional recovery. This 

study proposes a DL framework that integrates DTI metrics (FA, MD, RD, AD), struc-

tural MRI-derived WM and GM intensity values, and demographic data (age, gender, 

stroke time) to classify upper limb motor function as Good or Poor based on the FMA 

[3, 19]. Unlike conventional methods, our model utilizes a whole-brain analysis ap-

proach, where volumetric features are extracted directly from neuroimaging data with-

out predefined region-of-interest (ROI) constraints. Feature extraction is refined using 
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Global Average Pooling (GAP), the Convolutional Block Attention Module (CBAM), 

and residual connections to enhance motor-relevant representations. Six independent 

models were trained to improve robustness, each specializing in a different imaging 

modality, and combined their outputs using a weighted ensemble learning strategy, im-

proving classification accuracy and generalizability. The main contributions of this 

study are as follows: 

 Integrating DTI-derived diffusion metrics, structural MRI features, and demo-

graphic data to comprehensively represent post-stroke motor impairment. 

 Implementing a whole-brain analysis approach, avoiding predefined ROI con-

straints for improved feature representation. 

 Optimizing feature fusion using GAP, CBAM-based attention, and residual connec-

tions to enhance feature extraction. 

 Combining outputs from six independent models using a weighted ensemble learn-

ing approach to enhance robustness. 

 Achieving promising classification accuracy using a multimodal DL approach, with 

potential to support early rehabilitation planning and personalized treatment strate-

gies. 

Table 1. Comparison of ML and DL approaches for post-stroke motor impairment prediction. 

Study Method Input Data Output Performance 

Rondina et 

al. [17] 

GPR, SVM T1w-MRI, fMRI, lesion loca-

tion, CST integrity 

Motor function scores R: 0.68–0.83 

Tozlu et al.  

[15] 

Elastic-Net,  

RF, ANN,  

SVM,  

Decision Trees 

Demographics, clinical data, 

TMS-based neurophysiology, 

regional dysconnectivity (T1-

MRI) 

FMA scores, upper 

limb motor impair-

ment class 

R2: 0.70–0.91,  

AUC: 0.50–0.63 

Rehme et 
al. [16] 

SVM Resting-state fMRI, DWI le-
sion maps, connectivity maps 

Hand motor impair-
ment classification 

Acc*: 0.83–0.88 
(fMRI), 0.74 (DWI) 

Karakis et 
al. [18] 

Multi-Channel 
3D-CNN,  

SVM 

FA, MD, RD, AD, GM and 
WM integrity (MRI), demo-

graphic data 

Upper limb motor im-
pairment class 

Acc: 0.92 (CNN),  
0.91 (SVM) 

AUC: 0.92 

*Acc: Accuracy 

2 Materials and Methods 

Fig. 1 illustrates the proposed multimodal DL framework for post-stroke motor impair-

ment classification. The model integrates DTI, MRI, and demographic data, extracting 

FA, MD, RD, and AD maps from DTI and WM/GM segmentations from MRI. Features 

are refined using CBAM layers and residual connections, then processed through GAP, 

FCLs, and softmax for classification. Predictions from all pathways are combined using 

a weighted ensemble model to enhance classification robustness. 

2.1 Dataset  

Multiple independent datasets [18] were used to evaluate the proposed DL framework, 

incorporating DTI, structural MRI, and patient-specific clinical attributes. The dataset 
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consisted of 154 neuroimaging scans from 123 individuals, including both stroke pa-

tients and healthy participants. Motor impairment severity was classified into Good 

(n=101) and Poor (n=53) groups based on validated clinical assessments. A total of 64 

scans were acquired in the chronic phase, while 31 were obtained in the subacute phase. 

 

 

Fig. 1. Multimodal deep learning framework for post-stroke motor impairment classification.  

DTI scans were acquired using 3T MRI systems with single-shot EPI sequences, 

employing b-values between 700 and 1000 s/ mm2 across different protocols. Each scan 

included 30–61 non-collinear diffusion directions and at least one low b-value volume 

(b=0 or b=100 s/mm2) for baseline diffusion estimation. Voxel resolutions varied across 

datasets: 1.72×1.72×1.72 mm3, 2.0×2.0×2.0 mm3, and 1.8×1.8×2.0 mm3, ensuring high 

spatial fidelity for fiber tracking and microstructural assessment. Structural MRI scans 

were acquired with voxel sizes of 1×1×1 mm3, 1×1×1 mm3, and 0.45×0.45×0.90 mm3, 

enabling segmentation, lesion characterization, and volumetric analysis [2, 10, 11].  

Motor impairment was evaluated using validated clinical scales, including FMA 

[19], Box and Block Test (BBT) [20], Nine-Hole Peg Test (NHPT) [21], and Grip 

Strength (GS) [22]. When multiple motor scores were available, principal component 

analysis (PCA) was applied to derive a single representative measure, a strategy previ-

ously used in post-stroke recovery studies [23-24]. Participants were classified into 

good and poor recovery groups based on statistical thresholds derived from mean and 

median analyses of FMA and PCA scores, aligning with established cutoff values in 

the literature [24].  

2.2 Data Preprocessing 

DTI images were denoised using the dwidenoise() function in MRtrix. Motion and eddy 

current distortions were corrected using eddy_correct() in FSL, with b-vector rotations 

applied to preserve orientation integrity [25]. The BET tool in FSL was used for skull 

stripping, and diffusion metrics (FA, MD, RD, AD) were computed with dtifit in FSL. 

All maps were registered to a standard DTI template using FLIRT + FNIRT (FSL). To 

ensure lesion alignment, images of patients with left-hemisphere lesions were flipped 

using fslswapdim() in FSL [2]. T1/T2-weighted MRI images were reoriented using 

fslreorient2std(), denoised using BM4D filtering [26] in MATLAB, and skull-stripped 
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with BET (FSL). Bias field correction was performed using FAST (FSL), and images 

were non-linearly registered to the MNI 2 mm template (FLIRT + FNIRT in FSL). For 

lesion alignment, left-hemisphere lesion scans were flipped. WM, GM, and cerebrospi-

nal fluid (CSF) segmentation was carried out using FAST (FSL). 

2.3 Multimodal Deep Learning Model 

The proposed DL model consists of four primary blocks, each designed to enhance 

feature extraction through convolutional operations, residual learning, and attention 

mechanisms (Fig. 2). Block 1 applies a standard 3D convolution with batch normaliza-

tion (BN) and ReLU activation, avoiding pooling to preserve spatial resolution. Block 

2 introduces residual connections to facilitate gradient flow and feature reuse while 

avoiding pooling to retain fine-grained spatial details. Block 3 integrates residual learn-

ing and CBAM to enhance feature representation by selectively focusing on the most 

relevant spatial and channel-wise information [27]. Additionally, 3D average pooling 

is applied to reduce redundant information and improve generalization. Block 4 incor-

porates CBAM and GAP but omits residual connections, ensuring effective feature ag-

gregation before classification. 

 

Fig. 2. Proposed deep learning model with residual connections and CBAM-enhanced feature 

extraction. 

The CBAM enhances feature extraction by applying channel attention and spatial 

attention mechanisms sequentially [27]. Given an input feature map 𝐹, channel atten-

tion learns the importance of each channel by applying GAP and Global Max Pooling 

(GMP). These pooled features pass through a shared multilayer perceptron (MLP) and 

sigmoid activation, generating a channel attention map 𝑀𝐶(𝐹), formulated as: 

 𝑀𝐶(𝐹) = 𝜎 (𝑀𝐿𝑃(𝐺𝐴𝑃(𝐹)) + 𝑀𝐿𝑃(𝐺𝑀𝑃(𝐹))) (1) 

where 𝜎 denotes the sigmoid function, and MLP consists of two FCLs. The input 

feature map is then refined by element-wise multiplication with 𝑀𝐶(𝐹). Next, spatial 

attention focuses on key spatial regions by pooling along the channel dimension, fol-

lowed by a 7x7x7 and a sigmoid activation, producing the spatial attention map 𝑀𝑠(𝐹′): 
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 𝑀𝑠(𝐹′) = 𝜎(𝑓7×7×7([𝐺𝐴𝑃(𝐹′); 𝐺𝑀𝑃(𝐹′)])) (2) 

where 𝑓7×7×7 represents the convolution operation. The final enhanced feature map 

𝐹′′ is obtained by multiplying 𝑀𝑠(𝐹′) with the refined feature map: 

 𝐹′′ = 𝑀𝑠(𝐹′) ⊗ 𝑀𝑐(𝐹) ⊗ 𝐹  (3) 

By integrating CBAM in Blocks 3 and 4, the model effectively emphasizes critical 

features, improving feature representation and classification performance for post-

stroke motor impairment prediction. CBAM is particularly advantageous in multimodal 

brain image analysis, as it enhances the model’s ability to capture relevant spatial and 

channel-wise dependencies across different neuroimaging modalities [28-29]. 

 

2.4 Performance Metrics and Implementation 

The proposed model was evaluated using accuracy, specificity, precision, recall, and 

F1-score. It was implemented in Python using Keras with TensorFlow and trained with 

Adam (momentum: 0.9, learning rate: 0.0001, weight decay: 0.00001). Dropout and L2 

regularization were applied to prevent overfitting. The experiments ran on an NVIDIA 

RTX A6000 (48 GB GPU) with 64 GB RAM. An 80-20 train-test split was used, with 

154 samples (101 Good, 53 Poor) divided using 10-fold repeated random subsampling 

validation (RSV). RSV ensured balanced test data and multiple training appearances 

for each sample. To address class imbalance, sharpening-based data augmentation was 

applied. The model was trained 10 times with different RSV splits, totaling 100 itera-

tions for validation.  

This study’s code implementations, trained model weights, and sample test images 

are available at https://github.com/miccai3806/MotorImpairmentPrediction. 

3 Results and Discussion 

Table 2 presents the performance values of different imaging modalities for motor im-

pairment classification. WM achieved the highest accuracy (0.910), followed by FA 

(0.887) and AD (0.877), while GM had the lowest (0.827). FA and AD also demon-

strated strong specificity and precision, contributing to their overall classification per-

formance. GM and WM maps provided tissue-specific features important for stroke 

recovery. Our trials yielded lower performance for whole-intensity maps. This separa-

tion may enable the model to focus on detailed cortical (GM) and connectivity (WM) 

patterns without explicit ROI selection. 

Table 3 presents the performance of different ensemble approaches for motor im-

pairment classification. The WM+FA combination achieved the highest accuracy 

(0.973) and F1-score (0.972), outperforming the full ensemble model (0.957). This 

aligns with the literature, where FA and WM are key biomarkers for motor recovery 

prediction, capturing both microstructural and structural brain changes [3, 5-9]. Speci-

ficity remained consistently high (≥0.98) across all configurations while excluding GM 

and MD led to the lowest performance, highlighting their contribution to classification. 

Overall, ensemble learning improved robustness, with certain modality combinations 
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yielding superior results. In contrast to early fusion approaches such as Karakis et al. 

[18], who used a multi-channel CNN and reported 0.92 accuracy, our ensemble method 

addresses the feature fusion challenge by integrating modality-specific predictions at 

the decision level. This strategy ensures more balanced contributions from each modal-

ity, as no single modality dominates the final outcome. Importantly, it reduces the over-

lap of misclassified cases, since what one modality fails to detect is often captured by 

another. This highlights the complementary nature of the modalities and demonstrates 

the advantage of decision-level fusion in improving overall classification performance. 

While diffusion metrics appear correlated, in our ensemble what matters is which cases 

are misclassified by each modality. FA and MD, though related, capture distinct prop-

erties; in our cohort, lesions often spare motor pathways, so FA reductions outside these 

areas may not reflect motor impairment, while MD increases in non-motor regions may 

mislead. WM+FA yielded the best performance, supporting their clinical relevance. 

WM and GM maps provide tissue-specific features important for stroke recovery. Our 

trials showed they outperform whole-intensity maps.  

Table 2. Performance values for imaging modalities in motor impairment classification.   

Modality Accuracy Recall Specificity Precision F1 

WM 0.910*  

[0.833 0.967] 

0.907  

[0.867 0.933] 

0.913  

[0.800 1.0] 

0.918  

[0.813 1.0] 

0.910  

[ 0.839 0.966] 

GM 0.827  

[0.767 0.933] 

0.867  

[0.733 0.933] 

0.787  

[0.800 0.933] 

0.808 

[0.786 0.933] 

0.834  

[0.759 0.933] 

FA 0.887  

[0.833 0.967] 

0.867  

[0.800 1.0] 

0.907  

[0.867 0.933] 

0.905  

[0.857 0.938] 

0.883  

[0.828 0.968] 

AD 0.877  

[0.800 0.933] 

0.866  

[0.867 0.933] 

0.873  

[0.667 1.0] 

0.871  

[0.737 1.0] 

0.863  

[0.824 0.929] 

MD 0.853  

[0.733 0.933] 

0.860  

[0.733 0.933] 

0.847  

[0.733 0.933] 

0.857  

[0.733 0.933] 

0.855  

[0.733 0.933] 
RD 0.863  

[0.767 0.933] 

0.880  

[0.933 0.933] 

0.847  

[0.600 0.933] 

0.863  

[0.700 0.933] 

0.865  

[0.800 0.933] 

*Average [min max] 

Table 3. Performance values of ensemble approaches with different model combinations for 

motor impairment classification. 

Model Combination Accuracy Recall Specificity Precision F1 

All Models (EM6) 0.957* 

[0.900 1.0] 

0.913 

[0.800 1.0] 

1.0  

[1.0 1.0] 

1.0  

[1.0 1.0] 

0.953  

[0.889 1.0] 

WM+FA+AD+RD+MD 
(EM5) 

0.957 
[0.900 1.0] 

0.913 
[0.800 1.0] 

1.0  
[1.0 1.0] 

1.0  
[1.0 1.0] 

0.953  
[0.889 1.0] 

WM+FA+AD+RD (EM4) 0.927 

[0.900 1.0] 

0.873 

[0.800 1.0] 

0.980  

[1.0 1.0] 

0.978  

[1.0 1.0] 

0.922  

[0.889 1.0] 
WM+FA+AD (EM3) 0.940  

[0.900 1.0] 

0.900 

[0.867 1.0] 

0.980  

[0.933 1.0] 

0.979  

[0.929 1.0] 

0.936  

[0.897 1.0] 

WM+FA (EM2) 0.973 

[0.933 1.0] 

0.947 

[0.867 1.0] 

1.0 

[1.0 1.0] 

1.0  

[1.0 1.0] 

0.972  

[0.929 1.0] 

*Average [min max] 
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The proposed ensemble DL model outperforms previous methods, achieving 0.97 

accuracy with the WM+FA combination and 0.96 accuracy when integrating all mo-

dalities (WM, FA, AD, RD, and MD). As shown in Figure 3, certain modality combi-

nations yield higher accuracy than full integration, highlighting the importance of mo-

dality selection. This aligns with the findings in Table 1, where DL models incorporat-

ing multi-modal neuroimaging data outperform traditional ML approaches. The results 

reinforce the significance of FA and WM as key biomarkers for motor recovery predic-

tion, capturing both microstructural and structural brain changes. 

 

Fig. 3. Accuracy and F1-score values of modalities and ensemble models (EM). 

The absence of an external validation cohort limits the generalizability of the model 

and raises concerns about potential overfitting. To address this risk and enhance feature 

focus, the model integrates CBAM attention, residual connections, L2 regularization, 

dropout, and modality-specific training. In addition, multiple independent datasets were 

used to provide heterogeneity and reduce the likelihood of overfitting. Our finding that 

WM+FA maps provide strong predictive power is consistent with previous studies link-

ing FA and WM integrity to motor recovery [13]. However, given the absence of ex-

ternal validation in this study, it remains important to confirm these results in independ-

ent cohorts to ensure reproducibility. 

While PCA-derived composite scores facilitated harmonization of motor assess-

ments across heterogeneous datasets, this approach may reduce granularity in clinical 

outcome interpretation by obscuring individual test variances. Given challenges in col-

lecting stroke cohorts and using different motor assessments, PCA was applied to har-

monize these measures, consistent with prior studies [17, 23]. 

4 Conclusion 

Predicting motor impairment after stroke remains challenging due to the complexity of 

integrating neuroimaging biomarkers. This study introduced an ensemble DL model 

leveraging multimodal MRI and DTI-derived features, achieving 0.97 accuracy with 

WM+FA and 0.96 with the full ensemble. These results underscore the importance of 

both microstructural and structural imaging in motor recovery prediction. Unlike con-
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ventional ML approaches that require manual feature selection, our method automati-

cally learns discriminative patterns from whole-brain data. Future work will aim to en-

hance feature fusion, incorporate motor regions, and refine ensemble learning for im-

proved clinical applicability. Misclassified cases from single-modality models will be 

logged and analyzed to confirm low overlap and validate the ensemble’s complemen-

tary nature. The ensemble’s weight distribution and modality-specific contributions 

will be reported to quantify importance at the decision level. Feature relevance will be 

explored through attention maps and interpretability tools to better understand model 

decision. Although the model includes demographic variables, no clinical-only baseline 

was added; inclusion in future studies may provide further insights. 
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