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Abstract. The emergence of Large Language Models (LLMs) presents
unprecedented opportunities to revolutionize medical contrastive vision-
language pre-training. In this paper, we show how LLMs can facilitate
large-scale supervised pre-training, thereby advancing vision-language
alignment. We begin by demonstrate that modern LLMs can automat-
ically extract diagnostic labels from radiology reports with remarkable
precision (>96% AUC in our experiments) without complex prompt en-
gineering, enabling the creation of large-scale "silver-standard" datasets
at a minimal cost ( $3 for 50k CT image-report pairs). Further, we find
that vision encoder trained on this "silver-standard" dataset achieves
performance comparable to those trained on labels extracted by spe-
cialized BERT-based models, thereby democratizing the access to large-
scale supervised pre-training. Building on this foundation, we proceed to
reveal that supervised pre-training fundamentally improves contrastive
vision-language alignment. Our approach achieves state-of-the-art per-
formance using only a 3D ResNet-18 with vanilla CLIP training, includ-
ing 83.8% AUC for zero-shot diagnosis on CT-RATE, 77.3% AUC on
RAD-ChestCT, and substantial improvements in cross-modal retrieval
(MAP@50=>53.7% for image-image, Recall@100=52.2% for report-image).
These results demonstrate the potential of utilizing LLMs to facilitate
more performant and scalable medical Al systems. Our code is ava-
iable at https://github.com/SigmalDC/More-performant-and-scalable.
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1 Introduction

The evolution of medical artificial intelligence stands at a critical juncture, where
the convergence of large-scale data curation and foundational model development
is redefining diagnostic paradigms. Computed tomography (CT) imaging has al-
lowed non-invasive high-resolution imaging of anatomical structures, which has
been a key part of diagnosis for major diseases. However, the reading of CT
images is very time-consuming, usually requires orders of minutes to read com-
pared to X-rays. Besides current burden in reading CT images, the number of CT
examinations are still undergoing fast growth [21]. This escalating demand has
fueled intense interest in AI diagnostics, yet existing solutions remain trapped
in a trilemma of performance, scalability, and development cost.
Traditional supervised learning approaches, while achieving radiologist-level
performance in controlled trials and real-world clinical testing [24,2], face funda-
mental scaling limitations due to their reliance on expensive manual annotations.
The prohibitive costs associated with curating large-scale annotated datasets for
training performant models have driven the field toward self-supervised meth-
ods. Contrastive Vision-Language Pre-training (CLIP) [19] is widely recognized
as a potential solution, as its training is based on image-report pairs, which nat-
urally exist in clinical practice. By learning from language supervision, CLIP-
style models not only enable open-vocabulary recognition that can potentially
generalize to unseen conditions without additional training, but establish more
detailed image-to-semantic correspondence, which goes beyond simple one-hot
labels to capture detailed descriptions of size, location, and density that bet-
ter characterize complex medical conditions [20]. This detailed correspondence
not only facilitates cross-modal retrieval but also enables multimodal processing
with LLMs for more powerful and explainable decision making [1,15,17].
Nevertheless, CLIP-style models still face challenges in achieving effective
vision-language alignment, as evidenced by their suboptimal zero-shot perfor-
mance compared to supervised learning models, which is particularly concern-
ing for medical applications where accuracy is paramount. Despite a few works
reporting comparable performance with supervised learning models [27], to the
best of our knowledge, models that have gone through rigorous real-world clinical
testing are still based on supervised learning [24,2,7,9,25]. A potential solution
suggest by previous works is to decouple image representation learning with
vision-language alignment [26]. Which first learn performant image descriptors
with high-quality labels, then refining vision-language alignment in subsequent
phase. However, this reintroduces the limitations inherent to supervised learning.
The emergence of Large Language Models (LLMs) presents a new opportu-
nity to address this trilemma. In this work, we show how LLMs can facilitate
large-scale supervised pre-training and thus advance vision-language alignment.
We begin with leveraging the power of LLMs to extract labels from radiology
reports. After experimenting with three different LLMs (Deepseek [10], Qwen
[3] and Doubao [6]), we demonstrate that LLMs can automatically extract di-
agnostic labels with exceptional precision without the need for complex prompt
engineering. This enables creation of "silver-standard" datasets at unprecedented
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scale (50k+ CT studies across 18 pathologies). Further, we show that a vision
encoder trained on these LLM-extracted labels can achieve performance on par
with those using labels that use specialized BERT-based model to obtain, which
requires manually annotating thousands of reports to develop. By leveraging
LLMs to process reports, we reduce the labelling cost of 50k CT images to only
3 dollars, effectively democratizing access to large-scale supervised pre-training.

Building on this foundation of strong supervised pre-trained models, we lever-
age the power of supervised pre-training to advance vision-language alignment.
We demonstrate that enhanced visual representations learned from supervised
pre-training fundamentally transform contrastive learning dynamics, leading to
significantly improved alignment between visual and language modalities.

Our experiments demonstrate that stronger supervised pre-trained models
consistently improve zero-shot diagnosis, image-to-image retrieval, and image-
to-report cross-modal retrieval. Our framework achieves superior performance
using merely 10% of the training data required by existing state-of-the-art re-
sults. Using vanilla CLIP training with 3D ResNet-18 as the vision encoder,
we are able to achieve an 83.8% AUC in zero-shot classification, mAP50=53.7
and Recall@100=>52.2 on the large-scale CT-RATE [12], outperforming previous
state-of-the-art [20,14] by a significant margin. For out-of-distribution data, the
supervised-pretrained model shows even more significant improvement in gener-
alization, achieving 77.3% AUC in zero-shot classification on the RAD-chestCT
[11] dataset. This represents a 7.3% improvement in absolute AUC over previous
state-of-the-art methods with a considerably smaller model. It is also worth not-
ing that our method is compatible with advanced pipeline design [20,14], which
can be integrated with our approach to push performance even further.

In summary, we introduce the following contributions:

e We perform the first large-scale evaluation of the quality of diagnostic labels
extracted from radiology reports by LLMs

e We reveal that a vision encoder trained on LLM-extracted labels can achieve
performance comparable to models using labels from high-cost annotation
methods, thereby democratizing access to large-scale supervised pre-training

o We demonstrate that stronger supervised pre-training continuously improves
vision-language alignment, achieving state-of-the-art results in zero-shot di-
agnosis, image-to-image retrieval, and image-to-report cross-modal retrieval
using a 3D ResNet-18 with vanilla CLIP training

2 Method

2.1 Scalable LLM-powered label extraction

We design a simple yet effective prompt template for LLMs to extract abnormal-
ity labels from radiology reports, which clearly defines each category and enforces
a strict output format (18 comma-separated binary values) in the system prompt
and instruct each LLM to classify the presence (1) or absence (0) of 18 specific
conditions for a given report. This direct binary classification approach proves
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easier to implement than previous "summary-query" prompt methods [18] while
still maintaining high precision at a large-scale.
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Fig. 1: Overview of our proposed framework: (a) LLMs extract binary diagnos-
tic labels from radiology reports, enable curating a large-scale “silver-standard”
dataset; (b) these LLM-extracted labels are used for large-scale supervised pre-
training to learn high-quality image representations; (¢) a decoupled image and
text encoder is integrated to align CT images with their corresponding reports;
(d) our method surpasses current state-of-the-art approaches using only 10% of

the data, and when trained with 100% of the data, it significantly outperforms
them; and (e) superior performance is achieved across all abnormality classes.

2.2 Decoupled vision pre-training with LLM-extracted labels

Before engaging in vision-language alignment, we first learn superior visual rep-
resentations by leveraging the LLM-extracted labels. We employ a 3D ResNet-18
model (initialized with kinetics-400 [13] pre-trained weights from the Torchvision
model zoo) as our vision encoder. Given an input CT volume x € RH*XWxD,
our image encoder f; produces feature maps F = fr(x) € Re*PXwxd where
h,w,d are the spatial dimensions of the lowest resolution feature map and c is
the number of channels. We apply global average pooling to get the features
z = GAP(F) € R¢, and then employ a linear classifier with sigmoid function:

Pcls = O'(Wclsz + bcls)~ (1)
The model is trained using binary cross entropy (BCE) loss:

N

LpcE = — Z [yi log(peis,i) + (1 — i) log(1 — peis,i)] - (2)
i—1
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We further enhance the classification performance through two additional
strategies: (1) Label Smoothing regularization (LS) [22] that prevents the model
from becoming over-confident, and (2) Auxiliary Segmentation Supervision (ASS)
[16] that leverages automatically generated segmentation masks as additional
supervision. These enhanced supervision strategies lead to stronger supervised
pre-training models, which in turn improve vision-language alignment.

2.3 Enhanced vision-language alignment

Building on the strong visual representations learned via supervised pre-training,
we next align vision and language world using a vanilla CLIP training pipeline
with image encoder f; and text encoder fr. Given a batch of N image-text pairs,
the encoders produce feature representations v; = fr(I;) € R and t; = fr(T;) €
RI respectively. These features are then projected into a shared embedding
space, and the alignment is enforced using a contrastive loss:

N
1 exp(z] ;) exp(z] ;)
Lerp = — 5+ E log —x——F—+log —y— ——
2N i=1 Zj:l exp(2; ;) Zj:l eXP(Z]Tti)

(3

When using supervised pre-trained models, we explore removing the L2 nor-
malization before computing similarity scores z,” t; to better preserve the repre-
sentations learned during the supervised pre-training stage. Following CT-CLIP
[12,20], we use CXR-BERT [5] as our text encoder. For zero-shot diagnosis eval-
uation, we follow the protocol of CheXzero [23] and CT-CLIP [12].

3 Experiment

3.1 Experiment setup

Datasets: We use two datasets. CT-RATE [12] contains 50,188 chest CT scans
from 21,304 patients with 18 abnormalities identified via BERT-based extrac-
tion. We adopt CT-CLIP’s splits for training/validation. RAD-ChestCT [11]
comprises 36,316 noncontrast chest CTs (2012-2017) from Duke University with
83 abnormality labels. We use its public subset (3,630 scans) as external valida-
tion, following CT-CLIP’s framework [12] for consistency.

Implementation details: Preprocessing All CT volumes are resampled to
1.5mmx1.5mmx3.0mm via trilinear interpolation. The intensity values are clipped
to [-1000, 200] and then normalized to [-1,1]. Volumes are first padded/cropped to
240%240x120 and then randomly cropped to 192x192x96 during training, with
192x192x96 center crops for evaluation. Hyperparameters We use AdamW op-
timizer with a learning rate of le-4 for supervised pre-training and le-5 for CLIP
training, with batch size set to 10 for both stages. For supervised pre-training we
use equal weights for positive and negative samples. For CLIP training without
L2 normalization, we multiply the loss by a coefficient of 0.1, as removing the
L2 normalization increases the gradient scale.




6 Yingtai Li et al.

Table 1: Quality comparison of labels extracted by different LLMs

Model  AUC Accuracy Precision F1 Sensitivity Specificity

Deepseek 96.24  96.22 87.42 90.95 96.17 96.31
Qwen 94.12  95.73 87.44 88.56 91.44 96.80
Doubao 96.00 97.05 92.47 92.79 93.84 98.17

Table 2: Performance of vision encoder trained on different labels

Model AUC Accuracy Precision F1 Sensitivity Specificity
CT-RATE-official 84.83 77.81 44.37 80.08 78.88 77.52
Deepseek 84.66 77.65 43.81 79.99 78.31 77.58
Qwen 84.18 77.84 44.14 80.01 77.13 78.19
Doubao 84.88 77.86 44.34 80.12 78.22 77.80
Merged 84.92 77.92 44.76 80.18  78.69 77.89

3.2 Experimental results

LLMs extract labels with a high precision Deepseek/Qwen annotated all
50,188 reports with the expected output format. Doubao exhibited two format
errors, misclassifying the description "one millimetric nonspecific nodule in each
lung" as (2) rather than the required binary value of presence (1) or absence (0).

We evaluate the label quality by comparing the LLM-extracted labels to CT-
RATE’s official BERT-extracted labels, which underwent quality checks with
human annotations. The results are shown in Table 1. After analyzing the dis-
tribution of all abnormalities, we find "Medical material", "Atelectasis", and
"Lung opacity" show high variance among labels extracted by different LLMs,
we attribute this to definition ambiguity of these classes. For the remaining
abnormality classes, all LLMs demonstrated robust performance in identifying
condition presence and distinguishing between positive/negative mentions.
LLM labeling enables large-scale supervised pre-training To assess the
effectiveness of LLM-extracted labels, we train several 3D ResNet-18 models
and compare their performance with models trained on CT-RATE’s official
labels. Remarkably, despite potential variations in label quality, models using
LLM-extracted labels achieve performance comparable to those using the offi-
cial labels. Furthermore, when merging labels from all three LLMs by averaging
their predictions, the performance improves even further—surpassing the model
trained on CT-RATE official labels. This result is particularly significant con-
sidering the stark difference in annotation costs and effort.

Supervised pre-training advances vision-language alignment Our ex-
periments demonstrate a clear correlation between supervised pre-training per-
formance and vision-language alignment capabilities. As shown in Table 3, we
observe that each enhancement to the supervised performance consistently leads
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Fig. 2: Supervised pretraining enhances vision-language alignment and scalability

Table 3: Superivsed pre-training advance vision-language alignment
Sup. CT-RATE RAD-Chest Image-Image Report-Image

Model

AUC  AUC AUC  (MAP@5/10/50) (R@5,/10/50,100)
Base 84.9  79.0 69.1 70.2/59.8/51.8  5.5/9.4/29.2/41.7
Base+ASS 85.7  80.6 71.2 70.8/60.9/53.3 5.7/10.0/29.8/42.4
Base +ASS+LS 86.1  81.7 72.2 70.9/61.2/53.6 6.7/11.2/30.9/44.4
Base+ASS+LST 86.1  83.8 77.3 71.3/61.5/53.7 10.0/16.3/39.0/52.2

Sup.: Supervised; Base: 3D ResNet-18; ASS: auxiliary segmentation supervision;
LS: label smoothing; f: remove L2 normalization during CLIP training. For
Base+ASS+LS', the image-to-image retrieval is evaluated with L2 normalization.

to improvements across all vision-language evaluation metrics. In Figure 2a, we
show that supervised pre-training considerably lowers the contrastive loss dur-
ing CLIP training, indicating that the representation learned during supervised
pre-training reduces the gap needing to be bridged in vision-language alignment.

Notably, removing L2 normalization during CLIP training yields substan-
tial gains, particularly in zero-shot diagnosis and report-image retrieval tasks.
This improvement is unique to models initialized with supervised pre-trained
weights, as similar modifications show minimal impact on randomly initialized
or video pre-trained weights, demonstrating the importance of preserving the
representation learned during supervised pre-training.

We analyze the data scaling law of our method, which is shown in Figure 2b.
Our method exhabits a much larger coefficient compared to those reported in
previous work [20,4], indicating its exceptional data efficiency. While the expo-
nential term is relatively smaller, we attribute this to the fact that our method
surpasses their performance with only 10% of the training data. And such a high
performance slows down the rate of performance improvement.
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Table 4: Zero-shot abnormality diagnosis performance comparison across inter-
nal (CT-RATE) and external (RAD-ChestCT) validation benchmarks. The best
performance is highlighted as bold.

Method CT-RATE RAD-ChestCT
AUC ACC F1 score Precision AUC ACC F1 score Precision

CT-CLIP 73.1 66.8 70.7 323 629 59.5 64.2 33.6
BIUD [8] 71.3 68.1 71.6 33.8 629 60.6 65.2 33.7
Merlin 72.8 672 70.9 33.7 644 61.9 66.3 34.8
fLVM 77.8 71.8 75.1 379 68.0 64.7 68.8 374
BrgSA 79.2 733 76.2 385 70.0 65.5 69.3 39.1
Ours 83.8 77.4 79.6 43.5 77.3 71.9 T74.8 45.0

Table 5: Performance comparison for image-image and image-report retrieval
tasks on CT-RATE dataset. The best performance is highlighted as bold.

Method Image-Image Retrieval Report-Image Retrieval
(MAP@5/10/50) (Recall@5/10,/50/100)
VocabFine 68.3/57.2/48.8 0.1/0.6/2.3/2.0
ClassFine 67.9/56.8/48.5 —-/=/-/-
CT-CLIP 68.3/57.2/48.9 2.9/5.0/18.0/28.7
Merlin 62.6/51.3/43.9 1.5/2.7/7.7/12.7
BrgSA 69.2/58.5/50.5 5.8/10.1/28.6/42.0
Ours 71.3/61.5/53.7 10.0/16.3/39.0/52.2

New SOTA performances with supervised pre-trained weights Building
on the foundation of a strong supervised pre-trained model, we greatly advance
the performance of vision-language alignment, establishing new state-of-the-art
performance in zero-shot diagnosis, image-to-image retrieval and image-to-report
cross-modal retrieval tasks. As shown in Table 4, our method achieves significant
improvements over previous approaches, with an AUC of 83.8% on CT-RATE
(4.6% absolute improvement over BrgSA) and 77.3% on RAD-ChestCT (7.3%
improvement). This consistent performance gain across both internal and ex-
ternal validation sets demonstrates the robust generalization capability of our
approach. Notably, the improvement margin is even larger on the external RAD-
ChestCT dataset, suggesting that our supervised pre-training strategy helps
learn more generalizable features. The results in Table 5 show that our method
substantially improves both image-image and report-image retrieval tasks. It is
worth noting that these improvements are achieved using a relatively lightweight
3D ResNet-18 architecture, while many compared methods use larger models or
more complex architectures with ImageNet pre-trained weights or MAE pre-
trained weights. This efficiency is particularly important for clinical applications
where computational resources may be limited.
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4 Conclusion

We introduce an efficient framework that demonstrates the potential of con-
structing large-scale annotated datasets with LLMs and using them to train a
performant supervised learning models at a very low cost, which further advances
vision-language alignment, leading to new state-of-the-art performance in zero-
shot diagnosis, image-to-image, and image-to-report cross-modal retrieval with
a 3D ResNet-18 through a vanilla CLIP training pipeline. The success of our
method suggests the potential of leveraging LLMs to faciliate more performant
and scalable medical Al systems.
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