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Abstract. Positron emission tomography (PET) reconstruction is a challenging
inverse problem, where projection data often contain low statistics. While current
supervised learning methods offer strong noise suppression abilities, they may
suffer from generalization issues and are in many cases not accurate quantita-
tively. To overcome these challenges, we propose a novel self-supervised Time-
of-Flight PET (TOF-PET) reconstruction framework that utilizes Implicit Neural
Representations (INR) to model PET images. Specifically, we introduce a dif-
ferentiable forward projection model based on the imaging mechanism for TOF-
PET and reformulate TOF-PET reconstruction problem using INR. To enhance
image smoothness, we develop a ray-based total variation (TV) regularization
term, distinct from the traditional TV. For the internal structure of our INR, we
integrate a multi-resolution hash encoder with our designed prior-image encoder,
where the latter provides sufficient image prior and always delivers reliable ini-
tial reconstructions for arbitrary network depth. Experiments on brain and chest
datasets show that our method outperforms traditional iterative algorithms and
self-supervised approaches in noise suppression and contrast recovery. Compared
to conventional NeRF-based architectures, our model is more compact and con-
verges faster, providing an efficient solution for TOF-PET reconstruction. The
source code repository is hosted on GitHub: https://github.com/zyl123300/PD-
INR.git

Keywords: TOF-PET Reconstruction - Inverse Problem - Implicit Neural Rep-
resentation - Neural Radiance Fields.

1 Introduction

Positron emission tomography (PET) is a widely used functional imaging technique for
clinical applications [1,9, 17], such as tumor detection, by tracking the spatial distri-
bution of radioactive tracers. However, PET systems face challenges like low spatial
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resolution and high noise sensitivity. Time-of-Flight (TOF) PET addresses these limi-
tations by incorporating the time differences of annihilation photons, enhancing spatial
resolution, especially in low-dose scenarios.

Although the TOF kernel’s finite width (typically modeled as a Gaussian) intro-
duces some uncertainty in localization, TOF-PET significantly improves imaging per-
formance. However, effective reconstruction algorithms remain crucial for further en-
hancing PET image quality.

To address the limitations of PET imaging, iterative reconstruction techniques were
introduced. One of the most prominent iterative methods is the Maximum Likelihood
Expectation Maximization (MLEM) algorithm [11,24], which iteratively optimizes the
solution by incorporating a non-negativity constraint to prevent negative values in the
reconstructed image. Compared to analytical methods, MLEM offers better noise sup-
pression, significantly improving image quality in low-signal regions. As a result, iter-
ative reconstruction has become the standard approach in most modern PET systems.

In recent years, deep learning has achieved significant advancements in PET image
reconstruction, particularly in enhancing image quality and accelerating the reconstruc-
tion process. Deep learning applications in PET reconstruction can be broadly catego-
rized into three main approaches: (1) image post-processing [7, 14], where traditional
iterative algorithms are used to generate a preliminary image that may contain noise
or artifacts, and a denoising network is then trained to refine the image; (2) end-to-end
deep learning models [10,29] directly map sinogram data to image space, enabling the
networks to learn key features from large datasets and reduce reliance on manual in-
tervention. However, these approaches typically require a large amount of paired data
and suffer from significant generalization issues when handling new data. (3) hybrid
methods that integrate traditional iterative algorithms with deep learning [5, 6], replac-
ing specific steps such as data fitting and regularization with deep neural networks.
This combination retains the stability and theoretical rigor of traditional methods while
benefiting from the nonlinear mapping capabilities of deep learning, but still faces is-
sues such as the need for pre-training and generalization problems. In light of these
challenges, a self-supervised reconstruction method needs to be proposed, which can
optimize the image reconstruction process by leveraging the inherent properties of the
data itself, without relying on large amounts of labeled data.

Recently, Implicit Neural Representation (INR) [18] has gained significant atten-
tion, particularly through its success in Neural Radiance Fields (NeRF). NeRF uses
multilayer perceptrons (MLPs) to model the mapping from spatial coordinates to color
and density in continuous volumetric fields, enabling high-quality image reconstruc-
tion from sparse or noisy data. This framework has been extended to medical imag-
ing [3,4,15,16,19,22,23,27], with applications in reconstruction, segmentation, and reg-
istration. For example, IREM [19] leverages implicit functions of 3D spatial coordinates
to reconstruct high-resolution images from sparse inputs, while D-NAF [16] employs
continuous 4D implicit neural representation for dynamic 4D-CBCT reconstruction,
achieving superior image quality and efficiency. Other methods, such as CuNeRF [3],
enable zero-shot super-resolution through cubic sampling and hierarchical rendering,
further advancing medical image reconstruction. However, the application of INR for
TOF-PET reconstruction remains unexplored so far.
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In this work, our main contributions are summarized as follows:

— We propose a novel self-supervised method for TOF-PET reconstruction. To the
best of our knowledge, it is the first exploration of INR’s potential in TOF-PET.

— We develop a novel framework called prior-driven INR (PD-INR), which incorpo-
rates image prior into the conventional INR. With only a single-layer MLP, PD-INR
could still achieve promising reconstruction quality and convergence.

— We introduce a novel ray-wise TV regularization term in the feature domain, spe-
cially customized for our PD-INR.

2 Method

2.1 TOF-PET Image Reconstruction

In TOF-PET, assuming that the TOF events have been already pre-corrected, the ex-
pected true count y;;, along line-of-response (LOR) 4 at TOF-bin k& can be expressed
as Y, = >  Pijk;, where z; is the activity at voxel j, p;;i is the sensitivity of the
detector at (¢, k) for activity in j. Assuming that TOF-PET data y are independently
Poisson distributed, the log-likelihood function can be expressed as:

= i 1og Ui — Uik — ikl
L(y|x) Zl  Vik 108 Uik — Yir — log Y (1
The activity image is usually reconstructed by maximizing the Poisson log-likelihood:

X = arg max L(y|x). )
x>0

2.2 Prior-Driven INR for TOF-PET Reconstruction

Mathematical Formulation. Conventional algorithms reconstruct the image in dis-
cretized image space. Here, we adopt INR to model our activity image. Besides the
continuity of INR, the internal structure of INR would also bring some implicit prior
into the image. For the INR, the activity image is expressed as:

z; = fo(Sa(cy)) Vi, 3)

where c¢; € R3 is 3D coordinate of the voxel j, S¢(-) encodes the spatial coordinates
into image features, and fo(-) decodes the image features into the image intensities.
Here, @ and © are both learnable parameters for our image representation.

To adapt to such image representation, the traditional system matrix may need to be
re-defined in order to fully benefit from the expressive power of neural networks. Like
NeRF, we would like to reformulate the forward projection in a ray-wise manner, in
order to ease batch computation during iterative optimization.

For TOF-PET, the forward projection along the LOR ¢ at TOF-bin £ is modelled as
a line integral, i.e.,

Yik = / W(X, S; + tdz)h(t — tik) dt, “4)

— 00



4 Yuxuan Long, Yulin Zhang et al.

Predicted Activity

Gaussian
y[k=f| / \i x| Kernel

’ "(c) Feature Decoding (d) Weighted Integration

§s Z 20T — T — ALE (D)
LOR i at TOF-bin k i £ Yulog(u) = Ve = Ay
Initial
Estimate - Poisson Log-likelihood
(a) Ray Sampling (b) Prior-Driven Encoding True Counts (e) Model Optimization

Fig. 1. Overview of the proposed PD-INR framework. (a) Along LOR ¢, numerous points are
sampled within TOF-bin k. (b) For each point, the hash encoder Hg maps its coordinate c to
multi-resolution features while Fx extracts the neighboring intensities from the initial estimate X
as the prior feature. (c) All features are concatenated, then decoded by a tiny MLP feo. (d) The
predicted activities are integrated with the TOF profile, yielding the estimated counts ¥;y. (e) For
all LORs and TOF-bins, the model parameters are optimized and regularized by our designed TV
term in feature domain.

where the LOR 1 has the starting point s; € R? and the unit direction d; € R3, ¢;, is the
TOF variable, h(-) is the TOF profile often modeled as a truncated Gaussian function,
and ¥ queries the image intensity at the specified spatial position. For conventional
forward projection, ¥ linearly interpolates a discrete image. In the case of INR, we have
U(x,s; +td;) = fo(Ss(s; + td;)). By substituting it into (2) and further introducing
a penalty term, the reconstruction problem is finally re-formulated as:

max  L(y]0,P) Z L),

o (5)
St Yip = / f@(SqS(SZ‘ + tdl))h(t - tik) dt, Yi, k,

where E%), (@) is a TV term that enhances the image smoothness, and \ is some small

non-negative weight that controls the magnitude of penalty. Here, E(Tz\),(@) is defined as:

1

- F-TF S setvid = Sav)|. ©)

where {v,(f)}f::l are the coordinates for the sampled points along LOR 4, with vg,i) =

s; +tpd;, and the distances {tp}f::l are of ascending order. F' is the feature dimension,
ie., S¢ (Vz(f)) € RY. Those sampled points are also used for numerical approxima-
tion of the integral in (5), hence avoiding re-computations. Conventional TV penalty is
computed in discrete image space, and may be time-consuming for INR as all voxels’
activities are to be evaluated. Our TV term (6) is ray-wise (or LOR-wise), implying
small computation load. It only penalizes on the difference of neighbouring features
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along each LOR. This is nearly equivalent to a ray-wise TV penalty in image domain
since all coordinates share the same feature decoder when evaluating the activities.

Prior-Driven Encoding. TOF-PET reconstruction problem has been formulated using
INR, as shown in (5). Here, we would like to discuss our prior-driven INR (PD-INR)
framework in details, especially the prior-driven encoding function Sg. Specifically, Sg
concatenates the features computed independently from two encoders, i.e., Sg(c) =
[Hgp(c)”, Ex(c)”] T, where Hg(+) is the learnable hash encoder [20] and Ex(-) is the
prior-image encoder. These two encoders are respectively expressed as:

Hy(c) = of, @ (HD, ), Bx(e) = Guene)? (%), ™)

where @ denotes feature concatenation and ¥ is the linear interpolation function that
retrieves the features given the 3D coordinate.

For the hash encoder, there are a total of L levels of features for concatenation, and
H® js the I™ level cube-like feature map stored in a trainable hash table. The intro-
duction of hash tables not only compresses the number of parameters but also induces
the many-to-one property due to hash collisions, which coincides with the sparsity na-
ture of human organs, as claimed in NAF [28]. The hash encoder also concatenates
multi-resolution features from each level, which facilitates learning of both low- and
high-frequency details, thereby enhancing both image contrast and smoothness.

For the prior-image encoder, as shown in (7), A/(c) denotes the set of neighbors
(including itself) of the coordinate c, and X is the prior image obtained from the pro-
jection data. F(c) extracts the image intensities from the neighbours and merges them
as one feature vector, hence providing the image prior to our PD-INR. It is expected to
facilitate convergence and strengthen the expressive power of our spatial encoding.

We design the feature decoder fo(-) as a tiny MLP, which is sufficient to handle the
reconstruction task. Here, the feature decoder is initialized in the way that our PD-INR
start with a prior image. Specifically, the weights of the final layer are initialized as
[0 ., wT]T, such that 17w = 1; for the other layers, the weights are simply initialized
as identity matrices, while there are no bias in our MLP. And ReLU is used as the
activation function in the MLP and also guarantees a non-negative image. For such an
MLP of arbitrary number of layers, it could be found that the image intensity fo(Sg(c))
is initially set as w’ Fx(c), which is just a weighted average of neighbouring intensities
in the prior image. In this way, our PD-INR could always start from a prior image since
the very beginning, without any need for warm-up fitting.

Since then, our TOF-PET formulation and the internal design of PD-INR have been
discussed in details. The overall framework is displayed in Figure 1.

3 Experiments

3.1 Data and Settings

Data. We conduct experiments on two datasets: 1) Brain data, which are publicly avail-
able 3D PET images from BrainWeb [12]; 2) Chest data, which are clinical PET images
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Fig. 2. TOF-PET reconstruction of different methods on brain data at various doses.

collected from hospitals for patient diagnosis. Specifically, to investigate the algorithm’s
performance in tumor recovery, we insert multiple solid spheres with Gaussian textures
into the chest images. The projection data are generated using the Joseph3D algorithm
from the PyTomography library [21], with the number of TOF bins set to 13, and the
TOF time resolution set to 200 ps. For all data, the image size is 128 x 128 x 96, with
a voxel size of 1.5 x 1.5 x 1.5 mm?3, and the sinogram size is 224 x 449 x 4096 x 13.

Baselines. We compare our PD-INR with six baseline methods. OSEM [11] is a classi-
cal iterative reconstruction techniques for PET. MAP [13], is an iterative algorithm with
enforced TV penalty. Non-Local Mean (NLM) [2] is an image post-processing method
that preserves fine details while reducing noise. We also consider self-supervised learn-
ing methods, Noise2Void [25] and DIPRecon [5], which perform image restoration
without requiring labeled data. DenoisingGAN [8] is used as a post-processing denois-
ing module and serves as a representative of supervised learning methods.

Implementation details. We implement our framework in PyTorch and use Adam op-
timizer to solve (5). All experiments are run on a single NVIDIA V100 GPU with 32GB
of RAM. The learning rate is set at 2 x 10~2 and progressively reduced to 2 x 1074,
with a batch size of 16,384 rays (LORs) per iteration. For our framework, the prior
image is obtained by performing an initial OSEM reconstruction on the raw projection
data. We take single-layer MLP as the feature decoder and set L = 4 for Hg. Through
hyperparameter analysis, as shown on the left of Figure 5, our TV weight )\ is set to
5x 1075,

To evaluate the reconstruction quality, we employ PSNR and SSIM metrics [26].
PSNR measures artifact suppression, while SSIM assesses perceptual differences, with
higher values indicating more accurate reconstruction. For local lesion recovery, we
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Fig. 3. TOF-PET reconstruction results of different methods on chest data with enlarged tumor
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Table 1. PSNR (dB) and SSIM of different methods on brain data at various doses.

Method| EM [24] [MAP [13] NLM [2] | N2V [25]] DIP [5] | GAN [8] | PD-INR
100%dose|31.4/.936(30.8/.948[31.5/.942[31.2/.680|30.8,/.93930.4/.954|31.7/.964
10%dose|20.2/.905(23.6/.927[23.8/.916|25.1/.653(25.2/.926]25.3/.916|27.5/.942
1%dose|19.6/.823[22.8/.875(22.5/.871|18.2/.642[24.4/.888(24.0/.844(25.0/.893

analyze CR and STD curves [5]. CR evaluates the contrast recovery between the tu-
mor region and the background, and STD reflects the variability of background noise,
together providing a comprehensive assessment of lesion recovery quality. All metrics
are averaged over 20 independent noise realizations to ensure statistical reliability.

3.2 Results

Quantitative Evalution. Table 1 presents the experimental results on the brain data.
Our proposed PD-INR consistently achieves highest PSNR and SSIM. Notably, as the
dose decreases, the performance of classical iterative algorithms (e.g. EM) declines sig-
nificantly, primarily due to the low statistics in the data. In contrast, PD-INR demon-
strates a clear advantage in the case of low dose, outperforming even the supervised-
learning method DenoisingGAN (abbreviated as GAN in the table). Thanks to our
prior-driven encoding and designed TV regularization.

Figure 4 depicts the experimental results for small lesion recovery on the chest
data, displaying CR and STD of several iterative algorithms. Results for lung and liver
tumors are presented respectively. PD-INR shows relatively stable results, where its
CR approaches to 1 in few epochs. This is explained by our inserted image prior, which
enables fast convergence. Compared with other methods, PD-INR better suppresses
noise with relatively small STD.

Qualitative Evaluation. We also conduct visual comparison of different methods for
qualitative evaluation. The reconstruction results are shown in Figure 2 and Figure 3.
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Fig. 4. Comparison of different methods with CR and STD for tumor recovery.
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Fig. 5. Results of hyperparameter analysis (left) and ablation studies (right) on chest data using
PD-INR.

It could be observed that our PD-INR demonstrates superior overall reconstruction
quality and more accurate recovery of small lesion. Compared to other methods, PD-
INR could well preserve the image details while exhibiting robustness to data noises.

Ablation Studies. We conducted ablation studies on the chest data. We first found that
removal of our prior-image encoder in PD-INR led to failure in convergence, possibly
due to lack of expressive power. Then, we compare our PD-INR with following settings:
1) conventional INR framework, i.e. hash encoder + four-layer MLP; 2) removal of the
TV regularization from our PD-INR. The results are shown on the right of Figure 5.
As expected, removal of regularization (i.e. the orange curve) encouraged PD-INR to
overfit to statistical noises, hence PSNR starts to continuously drop after reaching the
peak. With TV penalty (i.e. red curve), PD-INR converged to a steady estimate. Besides,
it could be observed that our PD-INR (i.e. the orange curve) always performed better
than conventional INR (i.e. the blue curve), demonstrating the apparent advantage of
our prior-driven encoding.
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4 Conclusion

This paper proposes a self-supervised learning framework based on INR for TOF-PET
reconstruction. We re-formulate TOF-PET reconstruction problem under INR frame-
work, considering the imaging physics behind TOF-PET. To enhance image smooth-
ness while preserving structural details, we introduce ray-based TV regularization that
is specially customized for INR. Besides, we propose to employ multi-resolution hash
encoder for effective feature learning, combined with our designed image-prior encoder.
Experiments on brain and chest data demonstrate that our PD-INR method outperforms
existing baselines in noise suppression and contrast recovery, particularly for low-dose
PET imaging. In the future, it is highly possible to extend our method to other imaging
modalities.

Acknowledgments. This work was supported by the Young Scientists Fund of the National
Natural Science Foundation of China (Grant No. 62401516), and the National Natural Science
Foundation of China (Grant No. 62427807).

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Beyer, T., Townsend, D.W., Brun, T., Kinahan, P.E., Charron, M., Roddy, R., Jerin, J., Young,
J., Byars, L., Nutt, R.: A combined pet/ct scanner for clinical oncology. Journal of nuclear
medicine 41(8), 1369-1379 (2000)

2. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05). vol. 2,
pp- 60-65. Ieee (2005)

3. Chen, Z., Yang, L., Lai, J.H., Xie, X.: Cunerf: Cube-based neural radiance field for zero-shot
medical image arbitrary-scale super resolution. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 21185-21195 (2023)

4. Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H.P., Willcocks,
C.G.: Mednerf: Medical neural radiance fields for reconstructing 3d-aware ct-projections
from a single x-ray. In: 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society. pp. 3843-3848. IEEE (2022)

5. Gong, K., Catana, C., Qi, J., Li, Q.: Pet image reconstruction using deep image prior. IEEE
transactions on medical imaging 38(7), 1655-1665 (2018)

6. Gong, K., Guan, J., Kim, K., Zhang, X., Yang, J., Seo, Y., El Fakhri, G., Qi, J., Li, Q.:
Iterative pet image reconstruction using convolutional neural network representation. IEEE
transactions on medical imaging 38(3), 675-685 (2018)

7. Gong, K., Guan, J., Liu, C.C., Qi, J.: Pet image denoising using a deep neural network
through fine tuning. IEEE Transactions on Radiation and Plasma Medical Sciences 3(2),
153-161 (2018)

8. Gong, Y., Shan, H., Teng, Y., Tu, N., Li, M., Liang, G., Wang, G., Wang, S.: Parameter-
transferred wasserstein generative adversarial network (pt-wgan) for low-dose pet image de-
noising. IEEE transactions on radiation and plasma medical sciences 5(2), 213-223 (2020)

9. Gunn, R.N., Slifstein, M., Searle, G.E., Price, J.C.: Quantitative imaging of protein targets in
the human brain with pet. Physics in Medicine & Biology 60(22), R363 (2015)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Yuxuan Long, Yulin Zhang et al.

Hiéggstrom, 1., Schmidtlein, C.R., Campanella, G., Fuchs, T.J.: Deeppet: A deep encoder—
decoder network for directly solving the pet image reconstruction inverse problem. Medical
image analysis 54, 253-262 (2019)

Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of pro-
jection data. IEEE transactions on medical imaging 13(4), 601-609 (1994)

Kwan, R.S., Evans, A.C., Pike, G.B.: Mri simulation-based evaluation of image-processing
and classification methods. IEEE transactions on medical imaging 18(11), 1085-1097 (1999)
Levitan, E., Herman, G.T.: A maximum a posteriori probability expectation maximization
algorithm for image reconstruction in emission tomography. IEEE transactions on medical
imaging 6(3), 185-192 (1987)

Liu, C.C., Qi, J.: Higher snr pet image prediction using a deep learning model and mri image.
Physics in Medicine & Biology 64(11), 115004 (2019)

Liu, J., Bai, X.: Volumenerf: Ct volume reconstruction from a single projection view. In: In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention.
pp- 743-753. Springer (2024)

Long, Y., Lyu, T., Rao, F, Yuan, P, Chen, Y., Zhu, W.: D-naf: Dynamic neural attenuation
fields for 4d cbct reconstruction in pulmonary imaging. In: 2024 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM). pp. 3549-3554. IEEE (2024)

Machac, J.: Cardiac positron emission tomography imaging. In: Seminars in nuclear
medicine. vol. 35, pp. 17-36. Elsevier (2005)

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the
ACM 65(1), 99-106 (2021)

Molaei, A., Aminimehr, A., Tavakoli, A., Kazerouni, A., Azad, B., Azad, R., Merhof, D.:
Implicit neural representation in medical imaging: A comparative survey. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 2381-2391 (2023)
Miiller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM transactions on graphics (TOG) 41(4), 1-15 (2022)
Polson, L.A., Fedrigo, R., Li, C., Sabouri, M., Dzikunu, O., Ahamed, S., Karakatsanis, N.,
Kurkowska, S., Sheikhzadeh, P., Esquinas, P., et al.: Pytomography: a python library for
medical image reconstruction. SoftwareX 29, 102020 (2025)

Ran, Y, Li, Y., Ye, Q., Huo, Y., Bai, Z., Sun, J., Chen, J.: Ct-nerf: Incremental optimizing
neural radiance field and poses with complex trajectory. arXiv preprint arXiv:2404.13896
(2024)

Shen, L., Pauly, J., Xing, L.: Nerp: implicit neural representation learning with prior embed-
ding for sparsely sampled image reconstruction. IEEE Transactions on Neural Networks and
Learning Systems 35(1), 770-782 (2022)

Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE
transactions on medical imaging 1(2), 113-122 (2007)

Song, T.A., Yang, F., Dutta, J.: Noise2void: unsupervised denoising of pet images. Physics
in Medicine & Biology 66(21), 214002 (2021)

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from er-
ror visibility to structural similarity. IEEE transactions on image processing 13(4), 600-612
(2004)

Xu, J., Moyer, D., Gagoski, B., Iglesias, J.E., Grant, P.E., Golland, P., Adalsteinsson, E.:
Nesvor: implicit neural representation for slice-to-volume reconstruction in mri. IEEE trans-
actions on medical imaging 42(6), 1707-1719 (2023)

Zha, R., Zhang, Y., Li, H.: Naf: Neural attenuation fields for sparse-view cbct reconstruction.
In: International Conference on Medical Image Computing and Computer-Assisted Interven-
tion. pp. 442-452. Springer (2022)



PD-INR: Prior-Driven Implicit Neural Representations for TOF-PET Reconstruction 11

29. Zhu, B,, Liu, J.Z., Cauley, S.F,, Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-
transform manifold learning. Nature 555(7697), 487-492 (2018)



