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Abstract. Precise brain tumor segmentation is critical for effective treat-
ment planning and radiotherapy. Existing methods rely on voxel-level
supervision and often struggle to accurately delineate tumor boundaries,
increasing potential surgical risks. We propose an Attention-Guided Vec-
tor Quantized Variational Autoencoder (AG-VQ-VAE) — a two-stage
network specifically designed for boundary-focused tumor segmentation.
Stage 1 comprises a VQ-VAE which learns a compact, discrete latent rep-
resentation of segmentation masks. In stage 2, a conditional network ex-
tracts contextual features from MRI scans and aligns them with discrete
mask embeddings to facilitate precise structural correspondence and im-
proved segmentation fidelity. Additionally, we propose an attention scal-
ing module to reinforce discriminative feature learning and a soft mask-
ing module to refine attention in uncertain tumor regions. Comprehensive
evaluations on BraTS 2021 demonstrate that our AG-VQ-VAE sets a new
benchmark, improving the HD95 metric by 4.83 mm (Whole Tumor),
2.14 mm (Tumor Core), and 2.39 mm (Enhancing Tumor), compared to
state-of-the-art methods, while achieving a 0.23% improvement in Dice
score for whole tumor. Furthermore, our qualitative results and ablation
study demonstrate that feature-level supervision significantly enhances
boundary delineation compared to voxel-level approaches. The code is
available at https://github.com/danishali6421/AG-VQVAE-MICCAL

Keywords: Tumor boundary - Vector quantization - Self attention.

1 Introduction

Brain tumor, one of the most common and life-threatening cancers, is caused
by the abnormal growth of glial cells. Approximately 300,000 cases are reported
annually, with 75% being malignant [24]. Magnetic resonance imaging (MRI) is
frequently used to capture the detailed structure of brain tissues. Four major
MRI modalities / sequences (T1, T1lcg, T2, and FLAIR) are used to capture
heterogeneous and complementary information from the brain tissues. Expert
radiologists segment tumor regions by carefully analyzing each MRI slice across
these modalities. However, manual segmentation is a labor-intensive process due
to the substantial heterogeneity in tumor morphology, including size, shape, and
spatial location within the brain. Furthermore, low contrast between the healthy
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and tumorous regions in 3D multimodal MRI scans pose additional challenges
in precise boundary delineation.

Advancement in deep learning frameworks has driven researchers to explore
their potential for automatic tumor segmentation. Preliminary research [14, 18]
adopted a 2D U-Net architecture where each MRI volume was split into 2D slices,
and each slice was segmented independently. Several CNN-based 2D U-Net mod-
els such as Znet [19], LeU-Net [21], and BU-Net [23], have demonstrated promis-
ing results. While 2D U-Net models made considerable progress in advancing
brain tumor segmentation, their slice-wise processing of MRI data inherently dis-
rupts spatial continuity across adjacent slices, leading to potential performance
degradation [9]. To avoid this, various techniques such as 3DFCNN [1], ERV-
Net [34], VAT [20], and MBANet [5] have been proposed that exploit full 3D MRI
volumes. In addition, Zhang et al. [32] introduced a hierarchical multi-scale net-
work (HMNET) to capture the tumor structures at various scales. Similarly, in
the multi-scale residual U-Net (mResU-Net) [15], dilated convolutions of varying
scales are employed to expand the receptive field, leading to improved segmenta-
tion accuracy for targets of varying sizes. Although these methods have excellent
representation ability, they struggle to establish explicit long-range dependencies
due to the limited local receptive fields of convolution kernels.

Recently, attention-based models, particularly Transformers [27], have gained
significant recognition for their effectiveness in modeling global contextual rela-
tionships. Numerous Transformer models [4, 7, 26] have been proposed for med-
ical image segmentation, achieving favorable results. The TransBTS [28] marks
the pioneering attempt to integrate Transformer model into 3D CNN for brain
tumor segmentation. This architecture extends the encoder-decoder framework
by incorporating a Transformer in the bottleneck layer, leading to significantly
improved segmentation. In contrast to TransBTS, UNETR [12] used a Trans-
former encoder to derive sequence representations of the input volume, effectively
capturing global multiscale information. Jia et al. proposed a refined version of
TransBTS called BiTr-Unet [13] which employs two sets of ViT layers to extract
global information at two different scales. This solution surpasses the bottleneck
approach (TransBTS) and offers computational efficiency compared to UNETR.

While transformer models have shown remarkable success in brain tumor
segmentation, their attention mechanism involves computationally expensive
operations with quadratic cost. To enchance computational efficiency, several
window-based transformer models [3, 8,11, 35] have been proposed, with atten-
tion computed within localized windows. Dual-branch vision transformer (DB-
Trans) [31] models relationship between non-adjacent windows, significantly im-
proving the segmentation accuracy. Despite considerable progress made by these
methods, the challenge of accurately delineating tumor boundaries remains un-
solved. Most existing methods emphasize maximizing the overlap between pre-
dicted and ground truth masks using voxel-level supervision, often relying on
low-level spatial features passed through skip connections. However, they strug-
gle with precise tumor boundary delineation [29], which is crucial for effective
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treatment planning and tumor resection while preserving surrounding healthy
tissues [25].

To address the above limitations, we propose a novel two-stage brain tumor
segmentation network that not only enhances tumor boundary delineation but
also eliminates the reliance on low-level spatial features for segmentation tasks,
thereby improving computational efficiency. This two-stage design is loosely
inspired by recent advances in generative modeling, particularly DALL-E [22]
and VQ-Diffusion [10], which leverage discrete latent representations for more
structured generation. The first stage of our proposed model employs a Vector
Quantized Variational Autoencoder (VQ-VAE) trained on segmentation masks
to learn discrete latent representation, effectively capturing fine-grained bound-
ary details. The second stage introduces a cross-latent alignment network, inte-
grating convolutional layers with a Transformer-based bottleneck to effectively
map the continuous latent representations of MRI modalities to the discrete rep-
resentation of the segmentation mask. Our contributions are summarized below:

1. We propose a two-stage Attention-Guided Vector Quantized Variational Au-
toencoder (AG-VQ-VAE) to focus on structural coherence and accurate
boundary delineation across all tumor regions using feature-level supervi-
sion, without relying on low-level spatial features from skip connections.

2. We propose a novel attention scaling mechanism that dynamically modu-
lates the contribution of each attention head during training, prioritizing
those that are most relevant for feature learning, resulting in improved gen-
eralization.

3. We propose a soft masking module to adaptively assign weights to spatial
features based on their uncertainty following the attention calculation. This
enforces the model to focus more on learning features associated with tumor
boundaries that are inherently uncertain [17].

Extensive evaluation on the BraTS 2021 dataset demonstrates that our method
significantly improves tumor boundary delineation compared to existing state-
of-the-art models [16,31]. Our method improves the HD95 metric by 4.83mm,
2.14mm and 2.39mm for whole, core and enchancing tumors, respectively.

2 Methodology

We develop a two stage AG-VQ-VAE model for brain tumor segmentation, see
Fig. 1. The first stage employs a VQ-VAE to learn a discrete latent representation
of the ground truth segmentation masks. In the second stage, MRI conditional
network processes the four stacked MRI modalities, mapping their continuous
high-dimensional latent features to the discrete indices of the pre-trained VQ-
VAE codebook. Constituent components of our model are explained below.

2.1 Vector Quantized Variational Autoencoder

We cast brain tumor segmentation as a MRI-conditioned mask generation prob-
lem. To achieve this, three separate VQ-VAE networks are trained, each dedi-
cated to a specific tumor sub-region: Whole Tumor (WT), Tumor Core (TC), and
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Fig. 1. The overall architecture of the proposed AG-VQ-VAE method. Stage 1 consists
of VQ-VAE, while Stage 2 incorporates an attention-based MRI conditional network.

Enhancing Tumor (ET), using their respective 3D ground truth segmentation
masks. Figure 1 shows that Stage 1 comprises a hierarchical VQ-VAE network,
where the encoder (E,,) processes the ground truth input masks and maps them
to continuous structural features (Z.(z)) that capture essential details of the tu-
mor shape, size, and boundaries. These continuous features (Z.(z)) are then
passed through the vector quantization layer, which maps them to a finite set
of discrete latent features. The vector quantizer consists of K = 512 embedding
vectors, each of dimensionality D = 32 in its codebook E. The quantizer assigns
each continuous feature to the nearest embedding vector in the codebook based
on Euclidean distance, defined as:

Zq(w) = arg min || Ze(z) —exll, (1)

where Z.(z) and Z,(x) are the latent feature maps before and after quantiza-
tion respectively, and e, denotes the k-th embedding vector in the codebook
E. Finally, the decoder (D, ) reconstructs the mask from these quantized la-
tent features. Dice loss Lpjce is employed as the reconstruction loss for VQ-VAE
training. Straight-through estimator is applied to allow gradients to propagate
through the vector quantization step. Codebook vectors are updated using the
exponential moving average of the encoder output. Additionally, a commitment
loss

Loy = || Ze(x) = 54 Zy()]Il3 (2)
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where s, denotes the stop-gradient operator, is used to align the encoder’s output
with the codebook embeddings, to ensure stable training. The overall loss is:

Coverall = CVdL:Dice + acﬁch (3)

where ag and «a. are weights to balance Dice loss Lpice and commitment loss L,
respectively. By learning a discrete latent space, VQ-VAE ensures a structured
representation of segmentation masks, where the quantized latent embeddings
effectively capture essential tumor characteristics. The organization of similar
tumor structural patterns into distinct codebook embeddings allows for a robust
encoding of tumor morphology, which can help in precise boundary delineation
during reconstruction. Moreover, the adopted discrete encoding discourages the
model from memorizing specific instances, thereby enhancing its ability to handle
diverse anatomical variations.

2.2 MRI Conditional Network

The MRI conditional network (Fig. 1 stage 2) comprises a CNN encoder, cross-
latent alignment network and upsampling block. The input MRI of shape (4,
H, W, D), where four modalities are stacked along the channel dimension, is
passed to a CNN encoder which employs four convolutional layers to progres-
sively extract local features while downsampling the input to generate a lower-
dimensional embedding e; € R *HixWixDi i the 4, encoder layer (i € [1,4]).

This image embedding is then fed into the cross-latent alignment network,
where it is processed by a series of transformer layers. We utilize eight trans-
former layers, each employing multi-head self attention to capture global contex-
tual features and long-range dependencies within the brain’s anatomical struc-
tures and tumor morphology. The input embeddings, representing both healthy
brain tissues and tumorous regions, are tokenized and projected into queries
(Q), keys (K), and values (V) through learnable linear transformations, where
Q,K,V € RV¥d with N being the number of tokens in the MRI embedding
and dj denoting the dimension of each key and query vector. The query, key,
and value matrices are split into eight attention heads to effectively model the
structural variations in the brain, including the boundaries between healthy tis-
sues and tumors. Each attention head independently computes its own set of
attention scores using the scaled dot-product attention mechanism:

. QKT
Attention(Q, K, V) = softmax ( ) V. (4)

Vi
Following attention computation across all heads, the resulting features are
concatenated and passed through residual connections and layer normalization,
to ensure stable gradient propagation. A multi-layer perceptron (MLP) with two
fully connected layers and GELU2 activation is then applied to further refine
the learned representations. The refined tokenized embeddings undergo atten-
tion scaling and soft masking before being transformed into spatial embeddings.
Finally, these embeddings are upsampled using two convolution layers to match
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their feature dimensions with those of the pre-trained VQ-VAE codebook vec-
tors, with each feature vector assigned to the closest codebook entry. To align
the MRI latent embeddings with the corresponding segmentation mask, two loss
functions are employed: A cross-entropy loss that ensures each MRI embedding
vector is assigned to the codebook vector index that corresponds to its ground
truth (GT) mask feature vector, and a focal loss to prioritize the ambiguous
features. The overall loss for training the MRI conditional network is

Eoverall = (_ Zyl IOg(Ql)) + (_a(l - yAzW IOg(yl)) ) (5)

where, y; is the target codebook index, y; is the predicted probability, « is a
balancing factor, and ~ controls the focus on hard examples.

Attention Scaling Module: The multi-head attention mechanism captures
diverse features across multiple attention heads, but not all heads contribute
equally to the task of discriminative feature extraction. To optimize the learning
process, we introduce an attention scaling module that dynamically modulates
the contribution of each head based on its relevance in extracting discriminative
features. The module works by first projecting the attention features in the
head dimension, followed by global average pooling (GAP) within each head
to derive a compact descriptor that captures its overall significance. A softmax
function is applied across the attention heads to compute a set of normalized
weights, allowing the model to prioritize more relevant heads while suppressing
less informative ones. The attention scaling process can be formulated as:

Y = Proj(X) where Y € RBXL*NheaaxDheaa
S = Softmax (GAPp,_.,(Y)), (6)

Xscaled = Xresh ®S  where Xresh € RBXLXNheadXDheada

where "®" represents element wise rescaling and X,.s, denotes the reshaped
attention features in the head dimension. After attention scaling, the model in-
corporates squeeze and excitation to refine channel-wise attention, enhancing
feature representation and improving model generalization by emphasizing key
activations while attenuating redundant information.

Soft Masking: The Soft Masking Module, introduced after the first five trans-
former layers, aggregates the attention features into a single channel using a
learnable transformation, followed by a sigmoid to compute a certainty map.
This map generates a mask to prioritize uncertain features in the attention com-
putation of subsequent transformer layers. This results in a more precise and
reliable representation of complex tumor structures.

3 Experiments

Setup: We evaluate our method on the BraT$ 2021 dataset [2], comprising MRI
data of four modalities (T3, Tz, Tlcg, FLAIR) from 1,251 patients. Following
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Fig. 2. Qualitative results of our method on three test samples. Red box represents
the tumor region, with green, yellow, and red colors representing peritumoral edema
(ED), enhancing tumor (ET), and necrotic tumor (NCR) respectively. Test Sample 1
has Avg HD95 (1.24mm) and Avg Dice (91%), Sample 2 has Avg HD95 (1.41mm) and

Avg Dice (94%), and Sample 3 has Avg HD95 (1.27mm) and Avg Dice (95%).

recent studies [31, 16], we split the dataset into 834, 208, and 209 for training, val-
idation and test sets respectively. Ground truth is annotated by radiologists into
four regions: background, peritumoral edema (ED), necrosis (NCR), and enhanc-
ing tumor (ET). Segmentation results are evaluated across three regions: whole
tumor (WT), Tumor Core (TC), and enhancing tumor (ET) using Hausdorff
distance (HD95) and Dice similarity score. Our model is implemented in Py-
Torch and trained on each MRI conditional network for 150 epochs on NVIDIA
RTX 3090 (24GB) with a batch size of 3. We use GELU2 activation, the Adam
optimizer with learning rate of 1e™*, and a weight decay of 1le~*. We apply data
augmentations, including random flipping across three planes, rotation, intensity
shifting, and scaling, with probabilities of 0.5, 0.5, 0.1, and 0.1, respectively.
Results and Analysis: Table 1 compares the performance of our model with
state-of-the-art methods including 3D U-Net [6], TransBTS [28], UNETR [12],
DBTrans [31], NestedFormer [30], and Cascaded Causal Intervention [16] on the
HD95 and Dice score metrics for three tumor regions: WT, TC, and ET.
Compared to nearest competitor DBTrans [31], our boundary-focused feature-
level supervision approach improves HD95 by 4.83mm (WT), 2.14mm (TC), and
2.39mm (ET), and the Dice score of WT by 0.23%. Furthermore, our proposed
AG-VQ-VAE architecture, comprising three dedicated networks (one per tumor
region), results in a total of 441G FLOPs and 40M parameters. In contrast,
DBTrans [31] require 146G FLOPs and 25M parameters. Although our model
requires approximately 780ms to process a full 3D MRI volume (240x240x155)
on NVIDIA RTX 3090 (24GB) compared to 254ms for DBTrans [31], it still
produces segmentation results in less than one second, with memory usage be-
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Table 1. Comparison on BraTS 2021 dataset across three tumor regions: Whole Tumor
(WT), Tumor Core (TC), and Enhancing Tumor (ET). Best results are in bold.

Methods HD95 (mm) | Dice Score (%) 1
WT |TC |ET |AVG|WT |TC |ET JAVG

3D U-Net [6] 11.49|6.18 |6.15 |7.94 |89.59 |86.28 |83.39 [86.42
TransBTS [28] 15.12(8.21 |7.83 |10.38(89.25 [85.35 [80.35 [84.99
UNETR [12] 15.99(10.01|9.72 |11.90{90.10 (83.66 |79.78 [84.51
NestedFormer [30] 10.23|6.43 [6.08 |7.58 |90.12 |88.18 |85.62 |87.97
DBTrans [31] 9.84 (6.24 [6.13 |7.40 |92.41 |90.26 |86.70 |89.79
Causal Intervention [16]|13.92]5.85 |6.43 |8.73 [92.32 [91.19(87.21|90.24
Ours 5.01 [4.10 |3.74|4.28 |92.64(89.05 [82.25 |87.98

low 8GB, and achieves superior HD95 scores, highlighting a favorable trade-off
between accuracy and computational cost.

Note that accurate tumor boundary delineation is crucial for surgical decision-
making, as minor inconsistencies in inner voxel predictions of tumor regions are
more interpretable for clinicians than errors in boundary predictions [33]. Qual-
itative results in Fig. 2 show that, despite some inconsistencies in the prediction
of necrotic regions (red segmentation mask), the boundaries of tumor sub-regions
(WT =ED+ ET+ NCR, TC = ET + NCR, and ET) remain accurately de-
lineated. This makes boundary-focused approaches, such as our AG-VQ-VAE,
more clinically relevant than the models that prioritize inner voxel overlap but
struggle with boundary precision.

Ablation Study: We first evaluate the segmentation performance of the single-
stage AG-UNet with voxel-level supervision, incorporating both Attention Scal-
ing (AS) and Soft Masking (SM), as shown in Table 2. While this model achieves
better Dice scores for WT (93.19%) and ET (85.09%), its higher HD95 values in-
dicate less precise boundary delineation. In contrast, our two-stage AG-VQ-VAE
achieves significantly lower HD95 scores, demonstrating superior tumor bound-
ary delineation, even when using only one of the two modules. The best HD95
scores are achieved when using both AS and SM and excluding either one leads
to performance degradation, highlighting the importance of both modules for
accurate segmentation. These results validate that our two-stage AG-VQ-VAE
offers superior tumor boundary delineation compared to single-stage AG-UNet.

Table 2. Ablation study on Attention Scaling (AS) and Soft Masking (SM) to evaluate
the performance of the single-stage AG-UNet and two-stage AG-VQ-VAE.

Models AS|SM|HD95 (mm) | |Dice Score (%) 1
WT |TC |[ET (WT |TC |ET
6.15 |5.39 |4.37 [93.19|88.26 |85.09
5.01|4.10(3.74/92.64 |89.05(82.25
5.87 14.64 [4.20 |91.35 |88.51 [80.27
5.57 |4.99 |4.43 [91.74 |87.88 (80.41

AG-UNet (Single-stage) |v/
AG-VQ-VAE (Two-stage)|v’
AG-VQ-VAE (Two-stage)|v’
AG-VQ-VAE (Two-stage)|x

ENEIENEN
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4 Conclusion

We proposed a novel two-stage network for brain tumor segmentation with a
strong emphasis on precise boundary delineation. By integrating attention scal-
ing and soft masking, our approach enhances feature representation while ef-
fectively handling uncertainty in tumor regions. Evaluations on BraTS 2021
demonstrate the superiority of our method. We showed that our feature-level
supervision enables superior tumor boundary delineation compared to voxel-
level supervision commonly used in other methods. These advancements have
significant clinical implications for surgical planning.
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