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Abstract. Uncertainty estimation has been widely studied in medical
image segmentation as a tool to provide reliability, particularly in deep
learning approaches. However, previous methods generally lack effective
supervision in uncertainty estimation, leading to low interpretability and
robustness of the predictions. In this work, we propose a self-supervised
approach to guide the learning of uncertainty. Specifically, we introduce
three principles about the relationships between the uncertainty and the
image gradients around boundaries and noise. Based on these princi-
ples, two uncertainty supervision losses are designed. These losses en-
hance the alignment between model predictions and human interpreta-
tion. Accordingly, we introduce novel quantitative metrics for evaluating
the interpretability and robustness of uncertainty. Experimental results
demonstrate that compared to state-of-the-art approaches, the proposed
method can achieve competitive segmentation performance and superior
results in out-of-distribution (OOD) scenarios while significantly improv-
ing the interpretability and robustness of uncertainty estimation. Code
is available via https://github.com/suiannaius/SURE.
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1 Introduction

Accurate medical image segmentation is essential for clinical applications such
as diagnosis [1] and treatment planning [4]. Beyond accuracy, reliability, inter-
pretability, and robustness have raised increasing concerns for researchers and
clinicians. Recent advances in deep learning, particularly U-Net [6] and its vari-
ants [16,9,3], have significantly improved segmentation accuracy. However, these
models often neglect uncertainty in ambiguous regions like low-contrast or noisy
areas, leading to over-confident predictions and errors. The absence of uncer-
tainty further limits access to reliable predictions, hindering practical utility.
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To address these issues, uncertainty estimation methods, such as Bayesian
approaches [7], ensemble strategies [17], test time augmentation (TTA) [23], and
evidential deep learning (EDL) [10], have emerged. While Bayesian methods
like Monte Carlo Dropout [25] are computationally costly, ensemble-based tech-
niques [18] require training multiple models, and TTA depends heavily on aug-
mentations, EDL [21] offers a computationally efficient and theoretically sound
solution. Based on Dempster-Shafer theory [22] and subjective logic [12], EDL
integrates uncertainty directly into the model, enabling reliable estimations with
a single forward pass. While these models can provide pixel-level confidence [20],
they often fail to explain the underlying mechanism for uncertainty or maintain
robustness under noise perturbations.

In this study, we propose a self-supervised approach to enhance the uncer-
tainty interpretability and robustness against noise based on EDL. Different
from uncertainty calibration, differentiating the inaccurate predictions from the
accurate [26], we propose three principles requiring uncertainty estimation con-
forming to human beings’ thinking or reasoning patterns. Based on these prin-
ciples, we design supervision losses accordingly, leading to our novel uncertainty
supervision learning framework for medical image segmentation.

The contributions of this work are summarized as follows: (1) We introduce
an uncertainty supervision approach to enhance the interpretability and robust-
ness of evidential learning, by regularizing the relationships of uncertainty with
gradients of boundaries and noise; (2) We introduced new quantitative metrics
for interpretability and noise robustness of uncertainty; (3) Experimental re-
sults show that the proposed method aligns with human logic and demonstrate
enhanced robustness against noise in Out-Of-Distribution (OOD) cases.

2 Methods

As illustrated in Fig. 1, our framework comprises three parts:(1) For segmenta-
tion prediction and uncertainty estimation, we employ EDL to generate class-
specific evidence for input images, as detailed in Section 2.1. (2) For uncertainty
supervision, we introduce human-inspired gradient-based supervision loss to en-
hance its interpretability in Section 2.2, and (3) we design novel noise-based
supervision loss to improve both interpretability and robustness in Section 2.3.

2.1 Evidence-Based Prediction Generation

Let X = (xi) ∈ RV and Y = (yi) ∈ RV×K respectively denote a 2D slice and
its label, where V is the number of pixels, K is the number of classes. The ev-
idential network fθ estimates the evidence map as E = fθ(X) = (ei) ∈ RV×K .
According to subjective logic [12], for the i-th pixel in X, its categorical proba-
bility variable pi = (pik) ∈ [0, 1]K can be modeled as the Dirichlet distribution.
The uncertainty of the i-th pixel can be derived as ui =

K∑K
j=1(eij+1)

.
For supervised learning, we adopt Dice and cross-entropy loss function, de-

noted by LDice (P ,Y ) and LCE (P ,Y ), proposed in [27], and the Kullback-
Leibler divergence, i.e., LKL(P ), proposed in [21] to avoid collecting evidence
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Fig. 1. The overview of our work. Based on EDL, our model estimates uncertainty
from evidence, with gradient-based and noise-based supervision to enhance both inter-
pretability and robustness of uncertainty.

about the incorrect classes, where P = (pi) ∈ RV×K . The overall EDL segmen-
tation loss is denoted as:

LSeg = λCE · LCE + λDice · LDice + λKL · LKL. (1)

Although evidential learning offers a computationally efficient framework for
uncertainty estimation, it lacks supervision regarding the underlying originality,
resulting in limited interpretability and robustness. To address this, we propose
two uncertainty supervision techniques: gradient-based supervision and noise-
based supervision.

2.2 Gradient-Based Supervision

In regions near the boundaries, where uncertainty tends to be high, previous
models fail to explicitly reveal the factors contributing to the uncertainty val-
ues. As a result, understanding the nature and origin of uncertainty in decision-
making processes becomes challenging. To this end, we propose the following
principle to align uncertainty estimation with human intuition:

Principle 1. For clear boundaries, higher gradients yield lower uncertainty,
whereas ambiguous boundaries with lower gradients have higher uncertainty.

To achieve this principle, we introduce a gradient-based uncertainty super-
vision loss on boundary pixels, defined as:



4 Y. Li et al.

Lgu =
1

|B|
∑

i,j∈B,i̸=j

max(0, (ui − uj)(gi − gj)), (2)

where B represents the set of boundary pixels, and gi denotes the gradient of
pixel i, which is computed on a Gaussian smoothed image for stability. This
formulation ensures that uncertainty estimations are aligned with human per-
ceptual logic, thus enhancing their interpretability.

2.3 Noise-Based Supervision

Uncertainty is intrinsically related to both the noise and the distance of the pixel
from the boundary. The following principles describe the relationships:

Principle 2. When a pixel is close to the boundary, a larger noise amplitude
leads to higher uncertainty, and vice versa.

Principle 3. When a pixel is sufficiently far from the boundary, the uncer-
tainty becomes negligible, regardless of the noise amplitudes.

To capture the relationships described in Principle 2 and Principle 3,
we formulate the noise supervision loss function Lnu as follows for more inter-
pretable and robust uncertainty estimation,

Lnu =
∑
i∈S

1di≤d0 ·max(0,−(µ2 − µ1)(u2
i − u1

i ))︸ ︷︷ ︸
nearby noise → interpretability

+1di>d0 · (u0
i + u1

i + u2
i )︸ ︷︷ ︸

remote noise→ robustness

, (3)

where S denotes the sampled pixel set, di represents the distance of the
i-th pixel to the boundary, d0 is a threshold, µ1 and µ2 denote mean values
of two different normal distributions for noise sampling, u1

i and u2
i denote the

corresponding uncertainty of the i-th pixel after respectively applying the two
noises, and u0

i represents its uncertainty without noise. The first term in the
right side of Eq.(3) is for interpretability enhancement, and the second term
improves the robustness by constraining the uncertainty of pixels with distance
larger than d0.

Due to the large number of boundary points, we utilize an active learning
strategy that selectively focuses on the most informative data points, i.e., hard
samples, to improve training efficiency, instead of using all pixels in Eq. (3).

Hard Samples Detection Inspired by multi-class active learning techniques
[13], we first identify hard samples to guide the model’s learning process, en-
suring it focuses on more challenging instances. Specifically, we impose noise to
the entire training images and feed them into the model to obtain noised un-
certainty u1. According to Principle 2, u1 should be larger than the original
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uncertainty u0 for all pixels. We define hard samples as those pixels not meeting
this condition, namely Shard = {i|u1

i ≤ u0
i }.

To mitigate class imbalance, we adopt a class-wise sampling strategy, which
equally samples pixels from the previously identified hard samples for each class.
Thus, the model is encouraged to allocate balanced attention to each class region
during training, thereby improving its ability to handle underrepresented classes.

2.4 Total Loss

In general, the total loss consists of three terms, i.e., the segmentation loss from
EDL given by Eq. (1), and the uncertainty supervision losses outlined in Eqs.
(2) and (3),

Ltotal = LSeg + β · Lgu + γ · Lnu. (4)

3 Experiments

3.1 Dataset and Experiment Setting

We validated the proposed method with two datasets: (1) The Automated Car-
diac Diagnosis Challenge (ACDC) dataset contains 200 annotated short-
axis cardiac MR-cine images from 100 patients [2]. All slices were cropped to a
size of 96 × 96. (2) The REFUGE dataset includes 400 color fundus photog-
raphy (CFP) images for training and an additional 400 images for testing [19].
Each image was annotated with optic cup (OC) and optic disc (OD) labels. All
images were cropped into 512 × 512.

Implementation Details: We employed U-Net as the backbone, and the
Adam optimizer with a learning rate of 0.001. The batch size was set to 24 for
ACDC and 8 for REFUGE (reduced to 1 for the PU [5] method due to GPU
memory constraint). For hyper-parameters, we set λCE = 1, λKL = min(1, t/20).
We set λDice = 1 − α and β = 0.1α, γ = 10α for ACDC, and β = γ = α for
REFUGE, where the annealing factor α = α0e

{−(Inα0/T )t}. T and t were the
total epochs and the current epoch, respectively, with α0 = 0.01. The bound-
ary set B included pixels with d ≤ 1. For noise supervision, we set d0 = 4. All
experiments were implemented on an NVIDIA Geforce RTX 2080Ti GPU.

3.2 Evaluation Metrics for Principle 1 and Principle 2

For quantitative evaluation of uncertainty, the conventional metrics such as Ex-
pected Calibration Error (ECE) and Uncertainty-Error Overlap (UEO) [8,14]
can not measure the interpretable factors proposed in Principle 1 and Prin-
ciple 2. Therefore, we introduce two sets of new metrics, including Uncertainty
Correlation Coefficient (UCC) and Uncertainty Ratio (UR), to quantify the in-
terpretability of uncertainty estimations.

For Principle 1, UCC is defined as the Spearman correlation coefficients [24]
between image gradients and the uncertainty estimations, denoted by UCC[g] =
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Table 1. Comparisons with various uncertainty estimation methods on the ACDC and
REFUGE dataset. The bold indicates the best result in a column, and the underlined
indicates the second best. (✓) and (×) in UCC columns denote the same and opposite
signs as expected, respectively. The unit of HD95 is mm for ACDC, pixels for REFUGE.

Methods DSC↑ HD95↓ UEO↑ ECE↓ UCC UR↑

(%) (mm/pixels) g(−) µ(+) g µ

ACDC

Ours 91.06 8.45 0.222 0.009 -0.427(✓) 0.170(✓) 0.632 0.585
DEviS 90.36 7.42 0.269 0.007 0.109(×) -0.002(×) 0.446 0.500

PU 87.35 9.45 0.177 0.011 0.162(×) 0.602(✓) 0.430 0.801
EU 88.14 7.11 0.246 0.008 0.180(×) 0.021(✓) 0.424 0.511

UDrop 88.16 7.77 0.149 0.276 -0.022(✓) 0.636(✓) 0.630 0.818
TTA 73.44 37.7 0.277 0.025 -0.036(✓) -0.093(×) 0.497 0.453

REFUGE

Ours 84.46 56.35 0.275 0.024 -0.056(✓) 0.064(✓) 0.519 0.532
DEviS 83.05 65.39 0.359 0.065 0.043(×) 0.150(✓) 0.486 0.575

PU 79.01 117.7 0.384 0.035 -0.044(✓) 0.106(✓) 0.515 0.553
EU 83.60 56.14 0.160 0.037 -0.034(✓) 0.078(✓) 0.512 0.539

UDrop 73.60 65.23 0.117 0.277 0.016(×) 0.110(✓) 0.497 0.555
TTA 75.34 98.99 0.305 0.051 -0.052(✓) 0.155(✓) 0.517 0.578

SCorr(g, u) for boundary pixels B. Similarly, for Principle 2, we define UCC[µ] =
SCorr(µ, u) using pixels with d ≤ d0. Take UCC[g] as an example,

UCC[g] =

∑
i∈B(R(gi)−R(g))(R(ui)−R(u))√∑

i∈B(R(gi)−R(g))2
∑

i∈B(R(ui)−R(u))2
. (5)

R(·) denotes the ranking function, (·) denotes the mean values.
The UCC value ranges from [-1, 1], where the sign indicates the direction of

correlation (positive or negative), and the magnitude reflects its strength. An
interpretable uncertainty should satisfy UCC[g] < 0 and UCC[µ] > 0.

Alternatively, UR calculates the ratio of pixel pairs satisfying the relation-
ships between image gradients (noise) and the uncertainty estimations. Thus for
Principle 1, we define

UR[g] =

∑
i,j∈B,i̸=j 1((gi−gj)(ui−uj)≤0)∑

i,j∈B 1(i ̸=j)
. (6)

Similarly, we have UR[µ] for Principle 2 defined in pixels with d ≤ d0.
For segmentation accuracy, we adopted the Dice Similarity Coefficient (DSC)

and the 95% Hausdorff Distance (HD95)[11] as metrics.
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Table 2. Ablation study on the REFUGE dataset.

Lgu Lnu HSD
DSC↑ HD95↓ UEO↑ ECE↓ UCC UR↑

(%) (pixels) g(−) µ(+) g µ

✓ ✓ ✓ 84.46 56.35 0.275 0.024 -0.056(✓) 0.064(✓) 0.519 0.532
× ✓ ✓ 84.51 41.27 0.338 0.017 -0.034(✓) -0.013(×) 0.511 0.493
✓ × ✓ 84.65 42.53 0.286 0.019 -0.064(✓) -0.073(×) 0.522 0.464
✓ ✓ × 83.24 40.75 0.319 0.016 -0.075(✓) 0.009(✓) 0.525 0.504
× × × 83.96 58.40 0.337 0.022 -0.029(✓) -0.033(×) 0.510 0.484

(a) DSC change. (b) ECE change.

Fig. 2. Robustness evaluation on ACDC dataset, different colors represent different
methods. The values are the difference of scores under two different noise levels, e.g.,
△DSC(0.3, 0.1) = DSC(µ = 0.3)−DSC(µ = 0.1).

3.3 Experiment Results

Comparison Study We evaluated the proposed method by comparing with
various uncertainty estimation approaches, including EDL-based DEviS [26],
Variational Inference-based Probabilistic U-Net (PU) [5], Deep Ensemble-based
EU [17], Dropout-based UDrop [15], and Test-Time Augmentation (TTA) [23].

Table 1 presents the quantitative results on ACDC and REFUGE: (1) For
segmentation accuracy, our method achieved the best DSC scores and com-
petitive HD95 values on both datasets. (2) For the conventional uncertainty
evaluation (UEO, ECE), our method obtained competitive results on both
datasets. Particularly on REFUGE dataset, we achieved the best ECE value.
Note that UEO measures a strong correlation between uncertainty and error,
which might not match our principles to some extent. To enhance the inter-
pretability of uncertainty with the new uncertainty supervision losses, the per-
formance in UEO can be traded off. (3) For uncertainty interpretability
(UCC, UR), our method demonstrated significant superiority, as evidenced by
the consistent signs of UCC and their values in the tables. Moreover, one can
see that for other compared methods, none of them obtained the right signs for
UCC[g] and UCC[µ] on both datasets completely. Specifically, DEviS only had
the right sign of UCC[µ] on REFUGE, both PU and EU obtained the wrong
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Fig. 3. Illustration of prediction results and uncertainty maps of different methods.
Red arrows/boxes highlight erroneous uncertainty estimations, while green indicates
correct ones.

sign of UCC[g] on ACDC, UDrop and TTA respectively got the wrong sign of
UCC[g] on REFUGE and UCC[µ] on ACDC.

Ablation Study We analyzed the effectiveness of three techniques adopted
in the proposed method, including (1) gradient supervision loss Lgu (Eqs.(2)),
(2) noise supervision loss Lnu (Eqs.(3)), and (3) hard sample detection (HSD)
(Sec.2.3). As showed in Table 2 , without either Lgu or Lnu, our model delivered
an opposite sign of UCC[µ], although other metrics were slightly improved. Note
that HSD was used in the sampling process of the noise supervision loss, its
removal also led to a decrease of UCC[µ] and UR[µ].

Discussion To validate Principle 3 for robustness enhancing, we evaluated
the performance change when exposed to different levels of noise. Fig. 2 (a)
illustrates the change of DSC values for all compared methods. Specifically,
we use △DSC(µi, µj) representing the difference of DSC scores when apply-
ing two noises with mean value being µi and µj respectively. We chose µi ∈
{0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. Similarly, Fig. 2 (b) shows the results of △ECE(µi, µj)
for all methods. One can see that our method (red) shows the best overall sta-
bility, regardless of the level of noise added.

Fig. 3 illustrates the segmentation results and uncertainty maps of differ-
ent methods. Specifically, for Uncertainty Interpretability: (1) The second
row overlays uncertainty maps with image gradients. Our method shows lower
uncertainty in regions with higher gradients, conforming to Principle 1, while
other methods lack this clear relationship. (2) The third row displays uncer-
tainty difference maps between a test image and the image with patch noises.
Our method effectively highlights noisy patches near edges, which conforms to
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Principle 2. For Uncertainty Robustness, the fourth row shows uncertainty
difference maps between an original image and the noisy one with noise imposed
on the entire image. Our method emphasizes edge regions while maintaining
stable uncertainty in non-edge areas (Principle 3), while other methods might
exhibit significant uncertainty variations in regions beyond the boundary.

4 Conclusion

In this paper, we introduce a human-inspired uncertainty supervision method
within the evidential learning framework. By utilizing image gradients and noise
to constrain the uncertainty estimation, we not only provide reliable predictions
but also offer interpretable and robust uncertainty estimations, which aligns with
human experience. The proposed approach aids in understanding the sources of
uncertainty, thereby facilitating better decision-making.
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