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Abstract. Recent advancements in medical image segmentation have
leveraged multi-modal learning, incorporating textual descriptions to en-
hance segmentation accuracy. However, existing approaches suffer from
high computational costs and inefficient text-vision fusion mechanisms,
necessitating a more accurate yet computationally efficient solution. To
address this, we propose ViTexNet, a novel vision-language segmenta-
tion model that introduces Text-Guided Dynamic Convolution (TGDC)
for effective and lightweight fusion of medical visual features and tex-
tual cues. Unlike standard cross-attention mechanisms, which impose
high parameter complexity, TGDC dynamically refines image features
by leveraging relevant textual semantics at each decoder stage, ensuring
efficient feature modulation without excessive overhead. By adaptively
emphasizing clinically significant regions based on textual descriptions,
TGDC enhances segmentation performance while maintaining computa-
tional efficiency. Extensive evaluations on QaTa-COV19 and MosMed-
Data+ datasets demonstrate ViTexNet’s state-of-the-art performance,
achieving 90.76% Dice and 83.25% mlIoU on QaTa-COV19, and 78.19%
Dice and 64.04% mIoU on MosMedData+, while operating at just 11.5G
FLOPs, substantially lower than competing models. Ablation studies
confirm TGDC’s superiority over cross-attention-based methods, high-
lighting its effectiveness in optimizing segmentation accuracy without
computational trade-offs. The source code is made publicly available at:
https://github.com/bhardwaj-rahul-rb/vitexnet

Keywords: Multi-modal learning - Language-guided segmentation - Med-
ical image segmentation.
1 Introduction

Image segmentation is a fundamental task in medical image analysis, focusing on
identifying key regions of interest (ROIs) such as tumors, which critically influ-
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ence disease monitoring and treatment effectiveness [3]. Although deep learning-
based approaches have shown promising results for automatic segmentation, they
rely heavily on large, expert-labeled datasets. Such annotations are costly and
time-consuming to acquire, and even self-supervised techniques lack the explicit
supervision needed to reach high accuracy.

Fortunately, medical text reports, typically generated by clinicians, can serve
as auxiliary semantic guidance and are often readily available alongside imag-
ing data, thereby mitigating the need for additional data collection. Recent
language-guided methods [15, 11, 8] leverage these text features to compen-
sate for visual data limitations, enriching segmentation models with comple-
mentary clinical insights and reducing reliance on scarce labeled datasets. For
instance, TGANet [15] introduced a text-guided attention network for polyp
segmentation, while LViT [11] employed a hybrid CNN-Transformer to fuse im-
age and text features for chest X-ray segmentation. More recently, RecLMIS [8]
proposed a cross-modal alignment mechanism using reconstruction-based tech-
niques, demonstrating robust performance across multiple tasks. HCFNet [21]
introduced a hybrid decoder integrating multi-head cross-attention, a learnable
feature-modulation block (LCFM), and a multi-stage contrastive loss, resulting
in a resource-intensive segmentation network. Despite these advances, existing
approaches still rely on relatively heavy attention-based fusion strategies, which
increase computational overhead and highlight the need for more lightweight yet
effective methods.

This work presents ViTexNet, an efficient multimodal segmentation approach
that integrates visual and textual information at a notably low computational
cost (11.5G FLOPs). Its core is a novel Text-Guided Dynamic Convolution
(TGDC) module that globally pools text into a gating vector, which modulates
depthwise convolutions for image—text fusion. Experiments on QaTa-COV19 and
MosMedData+ show that ViTexNet outperforms both uni-modal and multi-
modal state-of-the-art methods. Ablation studies confirm TGDC’s effectiveness
compared to cross-attention and a combined self+cross attention mechanism.
Additional experiments on text prompt granularity reveal that more detailed
positional information in the textual description leads to improved segmenta-
tion results, underscoring the value of fine-grained linguistic guidance.

2 Method

Figure 1 provides an overview of the ViTexNet architecture, which is composed
of three main components: (i) an Image Encoder and Text Encoder that extract
feature representations for the visual and textual data, (ii) a Text-Guided Dy-
namic Convolution (TGDC) module for efficient fusion of these features, and
(iii) a Multi-modal Decoder that refines and upsamples the fused tokens for seg-
mentation. The following sections describe each of these components in detail.
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Fig. 1. Overview of ViTexNet, comprising three components: Image and Text En-
coders, TGDC Fusion Module, and Multi-Modal Decoder.

2.1 Image Encoder and Text Encoder

Image Encoder: We adopt the Swin-V2 Tiny Transformer [12]| as our im-
age encoder to extract multi-scale visual features from an input image of size
I € REXWX3 The model processes the image in four hierarchical stages, pro-
gressively downsampling the spatial resolution while increasing the channel di-
mensionality. We denote the resulting feature maps as: I; € R%X%X%,b €
R%X%Xlw, I3 € R%X%X?’S‘L, I, € Rs2%32 X768 Thege multi-level feature maps
capture both global contextual information and fine-grained spatial details, which
are subsequently leveraged in our decoder for accurate segmentation.

Text Encoder: We employ the domain-specific CXR-BERT [1], which has been
pretrained on large-scale chest X-ray reports and demonstrates strong capability
in extracting clinical semantics. For a tokenized text input 7' € RY, with L
denoting the length of the tokenized text sequence, CXR-BERT maps T to a final
embedding in R?*®, where C' is the dimensionality of each token embedding.
Following the standard BERT-base configuration, we set C' = 768 and freeze all
parameters to preserve its pretrained domain knowledge. These text embeddings
are reused at each stage of the multi-modal decoder, providing consistent textual
guidance throughout the segmentation process.

2.2 Text-Guided Dynamic Convolution (TGDC)

The TGDC module fuses image tokens V € REXVXC (from the image encoder)
with text tokens 7' € REXL*C (from the text encoder). Here, B is the batch
size, N the number of flattened spatial tokens, L the text sequence length, and
C the feature dimension. The process unfolds in three main stages.
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Global Text Gating: The text tokens T are first pooled along the token
dimension to obtain a single vector per sample, as given in Eq. (1):

tpool = AdaptiveAvgPool1d(T) € RB*¢ (1)

A two-layer MLP with ReLU activation then maps each t,001 to K scalar weights,
as defined in Eq. (2), which are then normalized by a softmax function:

[wi, wa, ..., wg] = Softmax (MLP (tp001)) (2)

where w; > 0 and Zfil w; = 1. These weights specify how strongly each fil-
ter should contribute, based on the global textual description (e.g., “Bilateral
pulmonary infection, two infected areas, lower left lung and lower right lung”).

Parallel Depthwise Convolutions and Weighted Fusion: Next, K parallel
depthwise 1D convolutions {convy,...,convk} are applied to V. Each convolu-
tion has a 3 x 1 kernel, sliding along the token dimension N. A depthwise 1D
convolution is applied so that each of the C' channels is convolved independently,
substantially reducing parameters and compute compared to a standard convo-
lution. Since the Swin encoder already captures 2D structure, flattening V' from
(B,N,C) to (B,C, N) for a 1D kernel remains effective.
For the i-th filter, the activation is computed as in Eq. (3):

O; = conv; (V') € REXxN, (3)

This is then rearranged back to (B, N,C) for consistency. Each output O; is
scaled by its corresponding weight w; and summed, as shown in Eq. (4):

K
=1

A LayerNorm is applied, followed by multiplication by a learnable scale ~, as
defined in Eq. (5):

Fﬁiiled = 7 LayerNorm (F(). (5)
Choosing K = 4 follows prior dynamic convolution studies [1], balancing rep-

resentation power and generalization, while a 3 x 1 kernel captures short-range
token interactions efficiently.

Iterative Refinement: To refine the features further, the same depthwise

convolutions and weighted fusion step is repeated within the TGDC module.
The partially fused tokens ng;lcd feed back into the same filters and text-derived

weights, as defined in Eq. (6):

K

F® — Z w; conv; (FiiiledT) ©)
=1
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F®

scaled

=7 LayerNorm(F(Q)) (7)
The final fused tokens ng;led (in Eq. (7)) are passed on to subsequent stages in
the decoder. Over training, each depthwise filter can specialize in distinct local
patterns, while the global gating from t,,,1 ensures the text context highlights
the most relevant features for accurate segmentation.

2.3 Multi-modal Decoder

The original image tokens V and the final TGDC output Fég;led are combined
with a learnable scale parameter 3, as given in Eq. (8):

Xfused =V + Féi()ﬂed (8)

This ensures the text-driven enhancements from TGDC are integrated with the
raw image features while preserving essential spatial information.

The fused tokens Xgyseq are reshaped from (B, N, C) to a 2D feature map
(B, C, H, W), where H x W = N. The UNETRUp block increases the spatial
resolution (Eq. (9)), aligning the tokens with the corresponding skip feature map
S from the encoder:

U = UnetrUpBlock (Reshape(Xfused)) 9)

Concatenating U and S along the channel dimension provides a higher-resolution
feature map M that combines encoder and text-refined information, as shown
in Eq. (10):

M = [Ua S]channel- (10)

Finally, a 1x 1 convolution projects the channels to the desired number of classes,
and a Sigmoid activation produces the segmentation mask, as defined in Eq. (11):

O:a(Conlel(M)) e REXLXHXW (11)

3 Experiments and Results

3.1 Dataset

To assess the effectiveness of the proposed method, two medical datasets were
employed: QaTa-COV19 [5] and MosMedData+ [13]. QaTa-COV19 contains
9258 chest X-ray images of COVID-19 cases, accompanied by extended med-
ical notes from [11]. Following the data split used in LViT [11], 5716 images were
allocated for training, 1429 for validation, and 2113 for testing. MosMedData+
consists of 2729 CT slices depicting lung infections; again, adhering to the LViT
[11] split, the dataset was divided into 2183 training images, 273 validation im-
ages, and 273 test images.
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3.2 Implementation Details

Implementation was carried out in PyTorch on an NVIDIA A100 GPU (40GB).
A cosine annealing schedule reduced the learning rate from 3e4 to le6. Input
images were 224x224, with a 10% probability of random zoom. The batch size
was 32, and DiceCE loss was used alongside AdamW optimization. Training ran
for 200 epochs, with early stopping after 50 epochs of no improvement. Dice and
mloU served as primary metrics, with Dice offering a more precise measure for
smaller targets.

Table 1. Quantitative comparison of segmentation results on QaTa-COV19 and
MosMedData+, encompassing both uni-modal and multi-modal learning methods (sep-
arated by a dashed line). Each approach is evaluated in terms of parameters (M),
FLOPs (@), and Dice/IoU scores (in %). Methods are annotated according to back-
bone architectures: CNN-based (°), SAM-based (), and Hybrid CNN-Transformer ().
The best and second-best performances are indicated in bold and underline, respec-
tively.

Method Venue Params ||[FLOPs || QaTa-COV19 |MosMedData-+

(M) (G) Dice T mIoU 1|Dice T mlIoU 7t
U-Net® [14] MICCATI'15 14.8 50.3 79.02  69.46 | 64.60 50.73
U-Net++° [22] MICCAI’18 74.5 94.6 79.62 70.25 | 71.75 58.39
nnUNet® [9] Nature’21 19.1 412.7 80.42 70.81 | 72.59 60.36
Swin-UNett [2] ECCV’22 82.3 67.3 78.07 68.34 | 63.29 50.19
UCTransNet! [16] AAAT22 65.6 63.2 79.15  69.60 | 65.90 52.69
MedSAY [18] ArXiv’23 104.3 55.2 82.77 70.60 | 77.65 63.47

"~ GLoRIAT[7] | 1CCV21 | 456 | 608 |[79.94 7068 | 7242  60.18
ViLTT [10] ICML’21 87.4 55.9 79.63 70.12 | 72.36 60.15
LAVTT [19] CVPR’22 118.6 83.8 79.28 69.89 | 73.29 60.41
TGANet® [15] MICCATI’22 19.8 41.9 79.87 70.75 | 71.81 59.28
Ariadne’s Thread® [20]| MICCAT’23 44.0 22.4 89.78 81.45 | 77.75 63.60
LViTt [11] IEEE TMI'23| 29.7 541 | 83.66 75.11 | 7457 61.33
LGAY [6] MICCATI24 8.24 381.1 84.65 76.23 | 75.63 62.52
RefSegformert [17] |IEEE TIP’24| 195.0 103.6 84.09 7548 | 74.98 61.70
RecLMIST [8] IEEE TMI'24 23.7 24.1 85.22 77.00 | 77.48 65.07
ViTexNet (Ours)? 37.7 11.5 |90.76 83.25 |78.19 64.04

3.3 Comparison with State-of-the-Art Models

ViTexNet is evaluated against widely used uni-modal approaches and the lat-
est multi-modal segmentation methods, ensuring fair comparison by employing
publicly available source codes (or re-implementations) with consistent hyper-
parameters and preprocessing. As shown in Table 1, ViTexNet surpasses all
baselines in FLOPs. Qualitative results in Figure 2 further illustrate ViTexNet’s
robustness, demonstrating superior segmentation performance across both chest
X-ray and CT datasets.
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Fig. 2. Segmentation visualizations on QaTa-COV19 (top three examples) and
MosMedData+ (bottom three examples) dataset. The overlays use yellow for true
positives, red for false negatives, and green for false positives. The final row includes a
dashed box highlighting a zoomed-in lesion region, offering a closer look at the model’s
segmentation accuracy.

3.4 Ablation Study

We explore the impact of replacing TGDC with cross attention or a self+cross
attention pipeline (self-attention on image tokens, followed by cross-attention
with text). Both alternatives increase the parameter count, yet TGDC achieves
better metrics overall. Table 2 details these findings, while Figure 3 provides
a qualitative comparison, further highlighting the advantages of our proposed
module.

Table 2. Impact of Attention.

Method Params | QaTa-COV19 MosMedData+

(M) Dice 1 mlIoU 1 Dice 1 mlIoU 1
Self & Cross Attention 44.4 90.40 82.49 77.73 63.44
Cross Attention 39.8 89.24 81.22 77.25 62.41
TGDC 37.7 90.76 83.25 78.19 64.04

We evaluate the impact of text prompt granularity by splitting each annota-
tion into Part A and Part B, each providing positional details at different levels.
As shown in Table 3 and Figure 4.
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Fig. 3. Segmentation visualization comparing cross attention, self4-cross attention, and
TGDC on QaTa-COV19 (top row) and MosMedData+ (bottom row). Overlays use
yellow for true positives, red for false negatives, and green for false positives.

; [— ——
Part A - Unilateral
pulmonary infection, one
infected area
\

Part B - lower right lung

Part A - Bilateral ﬁ
pulmonary infection, six | ) %

infected areas | % |

Text Annotation Image Ground Truth No Text PartA Part B PartA+B

Part B - upper left lung
and upper right lung

MosMedData+ QaTa-COV19

Fig. 4. Segmentation visualization with No Text, Part A, Part B, and Part A + B
on QaTa-COV19 (top row) and MosMedData+ (bottom row). Overlays use yellow for
true positives, red for false negatives, and green for false positives.

Table 3. Impact of text annotations

Text Parts QaTa-COV19 MosMedData-+
Dice ¥ mlIoU 1 | Dicet mlIoU 1

No Text 71.98 56.23 74.54 59.42
Part A 87.82 78.47 76.21 61.49
Part B 90.25 82.40 76.78 62.21

Part A + B 90.76 83.25 78.19 64.04

4 Conclusion

In this paper, ViTexNet is proposed as an efficient multimodal segmentation
approach that integrates textual and visual features through a Text-Guided Dy-
namic Convolution (TGDC) mechanism, rather than standard cross-attention.
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Validation on MosMedData+ (CT) and QaTa-COV19 (X-Ray) datasets demon-
strates its applicability across different imaging modalities. Experimental results
show that ViTexNet outperforms state-of-the-art uni-modal and multi-modal
methods in terms of Dice and IoU, while operating at a notably low FLOP
count (11.5G), reflecting a strong accuracy—efficiency trade-off. Further ablation
studies confirm TGDC’s advantage over both cross-attention and combined self-
and cross-attention blocks, and highlight the benefits of detailed text prompts.
Future work will extend ViTexNet to additional imaging modalities, explore 3D
segmentation, and evaluate it on a broader range of medical datasets to enhance
generalizability.
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