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Abstract. While understanding visual processing in the human brain
is fundamental for computational neuroscience, decoding objects from
electroencephalography (EEG) remains challenging due to noisy neural
dynamics during rapid image presentation and semantic misalignment in
zero-shot settings. We propose BrainAlign, a novel framework leveraging
contrastive learning to align EEG features with visual-language models
(VLM). Our approach addresses three fundamental challenges: (1) We
introduce a Frequency-Aware Temporal Encoder (FATE) using real Fast
Fourier Transform with tunable bandpass filters to compress noisy signals
while preserving temporal fidelity. (2) We develop a Differentiable Cluster
Assigner (DCA) that dynamically optimizes channel grouping through
cross-attention mechanisms, adaptively suppressing noise and enhancing
task-relevant features. (3) We implement a self-supervised framework
aligning EEG features with VLMs through contrastive learning. Exten-
sive experiments demonstrate state-of-the-art performance on large-scale
datasets, improving zero-shot retrieval accuracy by 5.85% and classifica-
tion by 3.3%. Our work establishes new possibilities for brain-computer
interfaces.

Keywords: Electroencephalography (EEG) · Contrastive learning · Dy-
namic channel clustering · Semantic alignment.

1 Introduction

The human brain recognizes objects from complex visual scenes within millisec-
onds of exposure [7], a capability reflected in the transient neural dynamics
captured through EEG during visual stimulation [8,14]. A critical neuroscience
question emerges: Can we decode semantic information about perceived objects
directly from EEG? Three challenges persist: modeling temporal dynamics un-
der rapid stimuli, capturing complex inter-channel dependencies, and aligning
neural representations with visual semantics for zero-shot generalization.

Brain-Vision Semantic Alignment. Visual-language models (VLMs) with
strong capabilities [17,4,15] offer unprecedented opportunities for bridging neu-
ral signals and semantic representations. While fMRI studies [19,9] have demon-



2 E. Shi et al.

Fig. 1. EEG channel modeling strategy.

strated visual experience reconstruction using VLM-enhanced frameworks, EEG-
based approaches face unique challenges due to low signal-to-noise ratios and
temporal sparsity [22,14]. BrainAlign establishes a dynamic mapping between
EEG features and VLM embeddings through contrastive learning, enabling knowl-
edge transfer from visual-language domains to neural signal interpretation.

Neural Dynamics Modeling. Traditional approaches under rapid visual
stimulation either struggle with spectral decomposition (time-domain methods
[29,1]) or sacrifice temporal resolution (frequency-domain approaches [20]). Our
FATE (Frequency-Aware Temporal Encoder) module introduces a hybrid archi-
tecture performing real FFT-based [2] spectral interpolation while maintaining
temporal coherence through flexible bandpass filters and inverse mapping, pre-
serving critical phase information often lost in conventional spectral methods.

Reinventing Multi-Channel Relationships. EEG channel interactions
present complex modeling challenges. As shown in Fig. 1, current strategies ei-
ther oversimplify dependencies (channel-independent models [16]), enforce rigid
anatomical priors (brain-region partitioning [26]), or rely on static clustering [28].
Our DCA (Differentiable Cluster Assigner) module revolutionizes this paradigm
through: (1) data-driven cluster centers updated via cross-attention, (2) gradient-
preserving optimization of cluster assignments, and (3) adaptive masking for
noise suppression. This approach identifies optimal channel interactions based
on stimulus content and individual neural characteristics.

Our principal contributions are threefold: (1) The BrainAlign frame-
work establishes end-to-end contrastive alignment between EEG signals and
visual-language models, achieving 5.85% and 3.3% accuracy improvement in
zero-shot object recognition. (2) The FATE module introduces a theoretically-
grounded hybrid time-frequency architecture. By integrating real FFT-based
spectral interpolation with learnable frequency projections and inverse tempo-
ral mapping, FATE creates more discriminative neural representations. (3) The
DCA module fundamentally transforms EEG channel analysis through a novel
end-to-end optimization framework for dynamic channel clustering.

2 Method

2.1 BrainAlign Architecture

As illustrated in Fig. 2, BrainAlign operates in two stages: EEG-VLM alignment
and zero-shot inference. Given EEG trials Xi ∈ RC×T evoked by natural image
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Fig. 2. Overview of the BrainAlign architecture and workflow (Training and Inference).

stimuli Ii, our EEG encoder first extracts latent features ei = fEEG(Xi) ∈ Rd.
Simultaneously, the paired stimulus image is encoded by a frozen VLM (i.e.,
OpenCLIP [17]) into semantic embeddings vi = fV LM (Ii) ∈ Rd. The alignment
process is formulated as a contrastive learning task and a regression task:

Lregress =
1

N

N∑
i=1

∥ei − vi∥22 (1)

Lcontrast = − 1

B

B∑
i=1

log
exp(s(ei, vi)/τ)∑B

j=1 [exp(s(ei, vj)/τ) + exp(s(ej , vi)/τ)]
(2)

where s(·) denotes cosine similarity, τ is a temperature parameter, and B is
the batch size. The regression term Lregress employs mean squared error (MSE)
to reconstruct target image features vi from EEG signals xi. Simultaneously,
Lcontrast encourages EEG representations to be similar to their corresponding
visual stimuli while being dissimilar to other images in the batch. This dual-
objective ensures the model preserves both modality-specific fidelity and cross-
modal consistency. The classification task follows the same pipeline.

During inference, we perform zero-shot object recognition by: (1) encoding a
test EEG signal using fEEG, (2) computing its similarity with a gallery of VLM
features extracted from candidate images (for retrieval) or with class prototypes
derived from text prompts like "a photo of a [class]" (for classification), and (3)
selecting the highest similarity match.

2.2 Frequency-Aware Temporal Encoder (FATE)

FATE Pipeline. As illustrated in Fig. 3-(a), FATE functions through a three-
stage process: frequency transformation, spectral processing, and inverse map-
ping. Initially, we convert the time-domain EEG signal to the frequency domain
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Fig. 3. Detailed structural presentation of BrainAlign’s key components.

using the real Fast Fourier Transform (rFFT) [2]: X̂ = rFFT(X) ∈ CC×F , where
F represents the number of frequency components.

Additionally, FATE incorporates bandpass filtering to optimize compatibility
with EEG signals. The bandpass filter effectively eliminates extraneous frequency
components outside the relevant bands, compressing the model representation
while preserving essential EEG characteristics. Subsequently, a cluster-aware
multilayer perceptron encodes the frequency-domain information. Although these
operations are performed in the frequency domain, the third stage enables su-
pervised training of time-domain features using MSE, employing the inverse real
Fast Fourier Transform (irFFT) to map the processed frequency representation
back to the time domain: Z = irFFT(Ẑ) ∈ RC×T ′

, where T ′ may differ from the
original signal length T depending on the spectral processing, necessitating zero-
padding prior to the inverse transformation. This time-domain representation
preserves the essential temporal patterns while eliminating noise and irrelevant
frequencies.

Cluster-aware Feed Forward. Rather than projecting EEG channels indi-
vidually or in mixture, or assigning specialized encoders to different brain regions
or fixed channel combinations, we allocate a separate Feed Forward network to
each soft cluster to capture underlying shared frequency patterns within the clus-
ter [3]. As depicted in Fig. 3-(b), hθk(·) represents the linear layer for the k-th
cluster with weights θ, and zi denotes the hidden embedding of the i-th channel
prior to projection. Consequently, the final frequency mapping constitutes the
weighted average of outputs from all cluster feed-forward layers according to
pi,k, e.g., Yi =

∑
kpi,khθk(Zi).
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2.3 Differentiable Cluster Assigner (DCA)

Channel Clustering with Learned Queries. DCA adaptively learns channel
groupings through a fully differentiable clustering mechanism, enabling end-to-
end optimization within deep learning pipelines, as depicted in Fig. 3-(a). We
initialize K learnable cluster embeddings, denoted as {c1, ..., cK}, where each
ck ∈ Rd, with d representing the hidden dimension. Given an EEG input X,
each channel is transformed into a d-dimensional embedding hi using linear
projection. To determine the association between channel i and cluster k, we
compute the probability pi,k using the following equation:

pi,k = Normalize(
c⊤k hi

∥ck∥∥hi∥
) ∈ [0, 1] (3)

Following the process illustrated in Fig. 3-(c), we employ a reparameterization
technique [11] to derive the clustering mask matrix M, where each element Mik

approximates a Bernoulli distribution. Higher probability values pi,k translate
to Mik values closer to 1, indicating strong association between the channel
and cluster k. Subsequently, we utilize mask-based cross-attention to update
learnable cluster queries, as shown in Fig. 3-(d). Defining C = [c1, ..., cK ] ∈ RK×d

as the cluster embedding matrix and H = [h1, · · · , hC ] ∈ RC×d as the channel
embedding matrix, calculations proceed as follows:

Ĉ = Normalize

(
exp(

(WQC)(WKH)T√
d

)⊙MT

)
WV H (4)

Here, WQ,WK , and WV represent learnable weight matrices.
Key Mechanism of Cluster Loss. To discover latent neurophysiological

patterns, we introduce a spectral clustering-inspired regularization Lcluster. Let
P ∈ [0, 1]C×K denote the raw cluster probability matrix. To enable gradient-
based optimization while approximating discrete assignments, we apply Gumbel-
Softmax relaxation:

P̃ck =
exp ((logPck +Gck)/γ)∑K

k′=1 exp ((logPck′ +Gck′)/γ)
, Gck ∼ Gumbel(0, 1) (5)

where γ is an annealing temperature. This produces a softened assignment ma-
trix P̃ , which is used for similarity-aware loss computation.

The cluster loss combines three terms:

Lcluster = −Tr(P̃⊤SP̃) + Tr
(
(I− P̃P̃⊤)S

)
+ λ

∑
c,k

−Pck logPck (6)

where Tr indicates a trace operator, S denotes the channel similarity matrix.
The first term maximizes similarities within clusters, while the second penalizes
similarities between different clusters. The entropy term prevents trivial solutions
where all channels collapse into a single cluster. The overall loss function thereby
becomes L = αLregress+(1−α)Lcontrast+βLcluster, where α governs the trade-
off between regression accuracy and cross-modal alignment, while β regulates the
strength of structural regularization.
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3 Experiments and Results

3.1 Datasets and Settings

We evaluate BrainAlign on the THINGS-EEG dataset [8], which comprises EEG
recordings from 10 participants exposed to RSVP stimuli. The experiment uti-
lized a time-optimized paradigm to minimize artifacts while maintaining partic-
ipant engagement. The dataset contains 16,540 training samples (1,654 unique
concepts × 10 images × 4 repetitions) and 16,000 test samples (200 concepts × 1
image × 80 repetitions), with stimuli presented in pseudo-randomized sequences
to mitigate order effects.

The preprocessing method is consistent with the original paper of the dataset
[8]: trials were segmented into 1,000 ms epochs aligned to stimulus onset, fol-
lowed by baseline correction using the 200 ms pre-stimulus interval, we retained
all channels and downsampled the data to 250 Hz. All training and testing proce-
dures are based on Pytorch 2.1.2, running on NVIDIA RTX 4090 and CUDA12.4.

3.2 Overall Performance

Our proposed BrainAlign framework establishes new state-of-the-art perfor-
mance across all evaluation protocols, demonstrating significant improvements
over existing EEG decoding paradigms. As shown in Table 2 and Fig. 4-(a),
BrainAlign achieves 30.55% Top-1 and 59.90% Top-5 accuracy in zero-shot EEG
retrieval, surpassing the best baseline (ATM-S) by 5.85% and 4% respectively.
Crucially, when integrating competing EEG encoders (NICE, ATM-S) into our
framework, we observe consistent gains, validating our architecture’s general
superiority independent of encoder choice. Traditional EEG models like EEG-
NetV4 show competitive 2-Way accuracy (95.00%) but collapse in fine-grained
tasks (69% 10-Way vs. our 76.05%), while foundation models (CBraMod: 19.65%
Top-1) lag significantly despite pretraining. Our framework’s cross-task robust-
ness is further evidenced by 10.85% Top-1 classification accuracy. The architec-
tural advantages generalize beyond EEG: on MEG data, BrainAlign’s DRConv
variant achieves 84.40% 2-Way accuracy.

Table 1. Retrieval performance (accuracy %) comparison using LOSO cross-validation.

Methods Top-1 Top-5 2-Way 4-Way 10-Way

MLP 4.46±0.81 15.26±2.34 75.80 55.08 34.05
EEGNetV4 [13] 6.25±2.56 20.95±5.73 82.85 64.65 42.35

CBraMod (Finetune) [25] 6.60±2.21 20.30±5.20 80.25 61.45 42.55
FoME (Finetune) [21] 3.57±1.66 10.43±3.33 62.50 48.51 29.35

NICE (Our Framework) 8.70±2.38 26.10±4.52 84.50 67.35 49.10
ATM-S [14] 11.84±4.80 33.73±8.73 87.36 72.80 53.80
BrainAlign (Ours) 12.40±3.31 30.25±6.04 88.50 72.50 59.13
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Table 2. Evaluation results (accuracy %) for zero-shot retrieval and classification
tasks based on EEG/MEG datasets. The test set contains 200 classes and performance
is evaluated using Top-1 and Top-5 accuracies as well as 2-way, 4-way and 10-way
accuracies. We present a comprehensive comparison of different model types (EEG-
specific models, EEG foundation models, time series models, and EEG-image models).
The best result is highlighted in bold, and the second best is highlighted with underline.

Methods Top-1 Top-5 2-Way 4-Way 10-WayModel
Type Chance level 0.50 2.50 50.00 25.00 10.00

Zero-shot Retrieval (EEG Dataset)

EEG Conformer [23] 3.98 17.10 76.17 56.29 34.72
ShallowFBCSPNet [18] 6.10 16.53 74.32 53.97 33.48
MLP 10.50 33.00 83.50 62.50 41.50

EEG
Model

EEGNetV4 [13] 16.50 50.00 95.00 79.05 69.00

BrainBERT (Probe) [24] 5.00 2.50 52.00 25.80 11.20
BrainBERT (Finetune) [24] 1.00 3.20 50.70 26.30 11.70
Neuro-GPT (Probe) [5] 0.73 2.50 50.75 23.90 10.50
Neuro-GPT (Finetune) [5] 8.26 25.49 71.60 51.50 31.50
FoME (Probe) [21] 0.83 2.33 49.17 25.67 11.67
FoME (Finetune) [21] 8.17 20.33 78.00 61.50 41.33
LaBraM (Finetune) [12] 0.50 2.50 50.65 24.85 9.35

EEG
Foundation

Model

CBraMod (Finetune) [25] 19.65 45.30 90.70 79.95 63.65

PatchTST [16] 19.00 46.80 92.80 81.70 66.80Time Series
Model Dlinear [27] 23.25 54.70 93.90 85.45 71.80

NICE [22] 20.08 49.43 93.55 83.97 68.53
NICE (Our Framework) 22.85 52.90 93.68 85.40 71.60
ATM-S [14] 24.70 55.90 94.00 86.55 72.95
ATM-S (Our Framework) 25.80 59.55 94.95 88.50 75.90

EEG-Image
Model

BrainAlign (Ours) 30.55 59.90 95.00 88.10 76.05

Zero-shot Classification (EEG Dataset)

Type Methods Top-1 Top-5 2-Way 4-Way 10-Way

MLP 2.80 9.70 69.30 47.70 25.40EEG
Model EEGNetV4 [13] 3.10 13.70 75.50 53.75 32.05

BrainBERT (Probe) [24] 0.60 2.70 49.30 24.90 9.90
BrainBERT (Finetune) [24] 1.00 3.40 53.50 25.60 10.70
Neuro-GPT (Probe) [5] 0.45 2.75 69.30 42.60 23.50
Neuro-GPT (Finetune) [5] 1.72 9.25 49.80 24.50 9.60

EEG
Foundation

Model
CBraMod (Finetune) [25] 5.95 16.35 74.95 55.20 33.80

NICE (Our Framework) 7.25 26.60 83.40 66.85 46.65
ATM-S [14] 7.55 22.60 82.75 65.40 43.25EEG-Image

Model BrainAlign (Ours) 10.85 28.05 84.70 69.55 49.25

Zero-shot Retrieval (MEG Dataset [10])

Type Methods Top-1 Top-5 2-Way 4-Way 10-Way

BrainAlign (STConv) 5.55 16.85 79.25 58.05 37.5EEG-Image
Model BrainAlign (DRConv [6]) 9.05 27.05 84.4 69.2 48.2
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BrainAlign also demonstrates superior cross-participant generalization in leave-
one-subject-out (LOSO) retrieval, achieving 12.40% Top-1 accuracy (a 4.7% im-
provement over standard ATM-S), as shown in Table 1. The code will be released
at https://github.com/1061413241/BrainAlign.

Fig. 4. Overview of model interpretation and ablation studies.

3.3 Model Interpretation and Ablation Study

Fig. 4-(b) visualizes the activation states of feedforward layers corresponding
to distinct clusters, revealing diverse patterns that guide the model’s feature
learning. For instance, Cluster-0 shows concentrated activation in the left region,
potentially focusing on capturing localized periodic variations, while Cluster-4
exhibits a more widespread activation pattern, suggesting an emphasis on global
feature extraction.

As shown in Fig. 4-(c), BrainAlign achieves peak 30.55% Top-1 accuracy
when all components are active, with systematic performance degradation ob-
served under ablation conditions. Parameter sensitivity analysis reveals optimal
performance when FATE’s bandpass filter operates in the 1-50 Hz range (θ/α/β
waves). This aligns with neuroscientific evidence linking semantic processing to
low/mid-frequency oscillations.

4 Conclusion

We propose BrainAlign, a novel framework for decoding visual semantics from
EEG signals using contrastive learning to bridge neural and visual-language rep-

https://github.com/1061413241/BrainAlign
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resentations. Our work advances the state-of-the-art in EEG-based object recog-
nition through three key innovations: (1) the FATE module uniquely preserves
both spectral and temporal fidelity in millisecond-level visual processing, (2)
the DCA module revolutionizes channel relationship modeling through gradient-
driven dynamic clustering, and (3) a robust contrastive learning strategy that
enables zero-shot generalization with significant performance gains (5.85% in
retrieval, 3.3% in classification). While BrainAlign demonstrates unprecedented
capabilities in neural decoding, limitations remain in handling extreme noise con-
ditions and generalizing across diverse recording environments. Future work will
focus on extending our framework to continuous EEG decoding during natural
viewing conditions, incorporating multimodal fusion with other neuroimaging
techniques to enhance our understanding of brain-vision relationships.
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