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Abstract. Fibrous cap thickness is a key clinical marker for assessing
carotid plaque vulnerability. While intravascular optical coherence to-
mography (OCT) enables in vivo visualization of fibrous caps, its design
for coronary arteries poses challenges in carotid imaging, such as larger
vessel size, faster blood flow, limited penetration, and restricted imag-
ing range, leading to incomplete visualization and poor image quality.
To address these limitations, we propose a dual-coordinate segmentation
framework for carotid OCT fibrous cap segmentation. This framework
integrates Cartesian images, which preserve global spatial context, with
linear-polar transformed images, effectively representing the annular ge-
ometry of fibrous caps. The fusion of dual-coordinate features mitigates
incomplete vascular walls and blood artifacts, enhancing segmentation
accuracy and robustness. We introduce a Cross-Coordinate Feature Fu-
sion Module (CCFFM) to efficiently integrate features from both co-
ordinate systems and reduce interference from redundant information.
Additionally, the Kolmogorov-Arnold Network (KAN) block is incorpo-
rated to extract complex nonlinear features while improving model in-
terpretability. Our method achieves state-of-the-art performance on an
external carotid OCT dataset, demonstrating the potential of OCT for
advancing carotid imaging and improving plaque vulnerability assess-
ment.
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1 Introduction

Fibrous cap thickness is a critical determinant of plaque stability, with thin-
ner caps being significantly more prone to rupture than thicker ones [1]. Plaque
rupture often triggers thrombosis, emphasizing the importance of accurately as-
sessing fibrous cap morphology and thickness for evaluating plaque vulnerability.
⋆ Corresponding Author: wuqiu@hust.edu.cn(Wu Qiu)
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Fig. 1. Visual comparison of Coronary and Carotid Artery OCT Imaging.

Intravascular optical coherence tomography (OCT) is currently the only imaging
modality capable of visualizing fibrous cap boundaries and morphology in vivo.
However, its application has been primarily limited to coronary arteries, with
limited use in carotid arteries, due to the unique anatomical and physiological
challenges posed by the latter. As shown in Fig. 1, carotid arteries have a larger
lumen diameter and thicker vessel walls compared to coronary arteries. These
anatomical differences, coupled with the shallow penetration depth and limited
imaging range of intravascular OCT, often result in incomplete visualization of
the vessel wall and lipid core, complicating accurate fibrous cap segmentation.
Additionally, the higher blood flow in carotid arteries hinders effective flushing
of residual blood with contrast agents, causing artifacts that obscure fibrous caps
and degrade image quality.

Existing fibrous cap segmentation algorithms are predominantly designed for
coronary artery OCT and exhibit significant limitations when applied to carotid
artery images. Traditional methods, such as dynamic programming-based ap-
proaches [16][15], rely heavily on handcrafted features, which hinder generaliza-
tion and make the methods vulnerable to noise. Although deep learning-based
techniques have shown promise, they typically rely on single-coordinate domain
inputs, neglecting the complementary information offered by dual-coordinate
representations [7][8]. As a result, these existing algorithms are not directly
adaptable to carotid fibrous cap segmentation due to the distinct characteristics
and challenges of carotid artery OCT.

This study introduces a dual-coordinate segmentation framework specifically
designed for fibrous cap analysis in carotid artery OCT imaging. The frame-
work combines Cartesian and polar coordinate representations through a cross-
coordinate integration mechanism, effectively addressing the inherent challenges
of vascular tissue characterization in OCT. Our contributions include 1) We
establish a dedicated segmentation architecture for fibrous cap quantification
in carotid OCT. 2) A novel cross-coordinate feature fusion module aggregates
multi-scale spatial information from orthogonal coordinate systems, enhancing
boundary delineation accuracy. 3) Integration of Kolmogorov-Arnold Network
components strengthens nonlinear feature representation while providing math-
ematical interpretability, improving segmentation robustness against vascular
morphological variations.
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2 Methodology

Fig. 2. Overview of our proposed dual-coordinate system feature fusion OCT Segmen-
tation framework

2.1 Overall structure

Given an OCT fibrous cap dataset (CI , CM )
N
i=1, where CI ∈ RH×W×3 and CM ∈

RH×W×1 denote the input images and their corresponding segmentation labels
in the Cartesian coordinate system, respectively, the Cartesian images CI are
first transformed into their polar representations PI ∈ RH×W×3 using the linear-
polar transformation, defined as:

ρ =
√

(x− xc)2 + (y − yc)2, θ = arctan 2

(
y − yc
x− xc

)
(1)

where (xc, yc) represents the center of the Cartesian image. The original Carte-
sian images CI and the transformed polar coordinate images PI are jointly fed
into the proposed network.

The network employs a U-shaped architecture comprising a single encoder
and a decoder with skip connections. The encoder includes three convolutional
blocks followed by two KAN blocks to extract features from different coordi-
nate systems. At each layer, the Cartesian and Polar features are fused using
the Cross-Coordinate Feature Fusion Module(CCFFM) to filter and integrate
complementary information. The fused features are propagated through skip
connections to the corresponding layers in the decoder. Additionally, at the bot-
tleneck layer, a Multi-scale Cross-axis Attention (MSCA)[13] is introduced to
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extract and integrate features across multiple scales, enhancing the network’s
capacity to capture fine-grained and global information. The framework of the
proposed method is illustrated in Fig. 2.

2.2 KAN Block

The Kolmogorov-Arnold Network (KAN) [10], inspired by the Kolmogorov-
Arnold representation theorem [6], overcomes the limitations of traditional MLPs,
such as low parameter efficiency and limited interpretability. By replacing con-
ventional linear weight matrices with learnable, parameterized activation func-
tions, KAN enables a more compact model architecture while maintaining supe-
rior performance. Additionally, this approach enhances the model’s interpretabil-
ity, making it particularly suitable for capturing and modeling complex features.

In our framework, the KAN block tokenizes the input feature map XL ∈
RHL×WL×CL into P × P patches, producing a sequence of flattened patches
{Xi

L ∈ RP 2·CL |i = 1, . . . , N}, where N = HL×WL

P 2 represents the total number of
patches. These patches are then projected into a latent D-dimensional embed-
ding space using a trainable linear projection E ∈ R(P 2·CL)×D, implemented as a
convolutional layer with a kernel size of 3. The tokenized embedding is expressed
as:

Z0 = [X1
LE;X2

LE; · · · ;XN
L E] (2)

where Z0 ∈ RN×D denotes the initial sequence of tokens.
After tokenization, the features are processed through the KAN layer, which

consists of three sequential operations, corresponding to a depth of three. To
capture both high-frequency details (e.g., edges and textures) and low-frequency
components (e.g., shapes and structures), we incorporate wavelet transform con-
volution [2]. This approach effectively addresses the diverse frequency character-
istics of dual-coordinate inputs. At the block level, a residual connection aggre-
gates the input tokens with the processed features to facilitate gradient flow and
preserve original information. The output of the k-th KAN block is computed
as:

Zk = LN (Zk−1 + WTConv2d(KAN Layer(Zk−1))) (3)

where LN(·) denotes layer normalization. Batch normalization (BN) and ReLU
activation are applied after each WTConv2d operation to stabilize training and
introduce non-linearity.

2.3 Cross-Coordinate Feature Fusion Module

Although dual-coordinate system images provide rich semantic features, directly
integrating features from different coordinate systems presents several challenges.
Representational differences between Cartesian and polar domains can lead to
spatial misalignment and inconsistencies. The varying distributions of features
across coordinate systems may cause imbalanced feature contributions, while re-
dundant information can increase computational complexity and risk overfitting.
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Additionally, coordinate transformations can introduce noise, further complicat-
ing effective feature fusion.

To address these issues, we propose the Cross-Coordinate Feature Fusion
Module (CCFFM), as illustrated in Fig. 3, comprising the Coordinate Fea-
ture Selection Module (CFSM) and the Coordinate Channel Attention Module
(CCAM). Together, these modules refine and align features, mitigate redundan-
cies, and enhance representation, enabling robust integration of dual-coordinate
features.
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Fig. 3. Cross-Coordinate Feature Fusion Module.

The CFSM serves as the first stage of the Domain Fusion Module and
is responsible for filtering and refining the features extracted from the dual-
coordinate systems. At the i-th layer, the features Pfi ∈ RHi×Wi×Ci from the
Polar coordinate system and Cfi ∈ RHi×Wi×Ci from the Cartesian coordinate
system share identical dimensions. To fully exploit the complementary charac-
teristics of these two representations, the CFSM concatenates the features along
the channel dimension, producing a combined feature map Fi ∈ RHi×Wi×2Ci .

The concatenated feature map Fi is processed through a wavelet transform
convolution (WTConv2d), followed by GELU activation and Batch Normaliza-
tion to preserve high-frequency details and capture low-frequency components.
To ensure consistency and mitigate feature degradation, a residual connection
combines the transformed features with the original input:

Fresidual = BN(GELU(WTConv2d(Fi))) + Fi (4)

This residual design enhances the stability and effectiveness of feature refine-
ment, ensuring robust integration of complementary features.

The residual output Fresidual is refined by two sequential blocks, each consist-
ing of a 1×1 convolution, GELU activation, and Batch Normalization, resulting
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in the selected features:

Fselected = BN(GELU(Conv1×1(BN(GELU(Conv1×1(Fresidual)))))) (5)

The selected features Fselected are then passed to the CCAM module for
further refinement and attention-based feature fusion. The CCAM enhances fea-
ture representation by applying both channel and spatial attention mechanisms.
First, max pooling and average pooling operations are applied along the spatial
dimensions to generate two feature maps, which are processed through a shared
convolutional layer and combined using element-wise addition to produce the
channel attention map:

Mchannel = σ (Convshared(MaxPool(Fselected)))+σ (Convshared(AvgPool(Fselected)))
(6)

where σ denotes the sigmoid activation function. The channel attention map
Mchannel is applied to Fselected through element-wise multiplication, resulting in
the weighted channel features Fchannel.

To capture spatial dependencies, the channel-weighted features Fchannel are
first processed through a 5 × 5 depth-wise convolution to extract local spatial
features, resulting in Flocal. These features are then passed through parallel cas-
caded depth-wise convolutions with elongated kernels (1 × k and k × 1, where
k ∈ {7, 11, 21}), capturing long-range spatial dependencies. The outputs from
these convolutions are aggregated with Flocal to produce the spatial attention
map:

Mspatial = Flocal +
∑

k∈{7,11,21}

DWConvk×1 (DWConv1×k(Flocal)) (7)

Finally, a 1 × 1 convolution is applied to fuse the channels, and the spatial
attention map is multiplied with the channel-refined features to produce the final
fused features:

Ffi = Conv1×1(Conv1×1(Mspatial)⊙ Fchannel) (8)

2.4 Loss function

We design a composite loss function that combines Dice loss, binary cross-
entropy (BCE) loss, and clDice loss[14]:

L = λ1 · LDice + λ2 · LBCE + λ3 · LclDice (9)

where λ1, λ2 and λ3 are weighting coefficients balancing the contributions
of each term. In particular, the clDice loss is employed to preserve the topologi-
cal structure of fibrous caps, effectively reducing fragmentation and minimizing
spurious regions in the segmentation.



Title Suppressed Due to Excessive Length 7

Fig. 4. Visual results of fibrous cap segmentation on Carotid OCT.

3 Experiments and Results

Datasets and Pre-processing: The dataset consists of OCT image pullbacks
from 36 patients with fibrous cap lesions, totaling 1,595 cross-sectional images
with an original resolution of 704 × 704 pixels. The data were divided at the
patient level into training and validation sets in a 7:3 ratio for model parameter
optimization and hyperparameter tuning. An external validation set, comprising
480 cross-sectional images from 24 additional patients, was used to evaluate
model performance independently. All annotations were manually delineated by
a radiologist with six years of imaging experience and subsequently reviewed
by a senior neurologist with ten years of experience to ensure label accuracy.
The datasets used for internal and external validation were collected from seven
hospitals using two different OCT systems.
Hyper-parameters Settings: The data augmentation techniques employed
during training include random rotations, flipping, adjustments to brightness
and contrast, as well as shifts in hue, saturation, and value (HSV). The model
was trained on a single NVIDIA RTX 3090 GPU with 24 GB of memory, using
the Adam optimizer implemented in PyTorch. The initial learning rate was set
to 1 × 10−2 for the KAN layers and 1 × 10−4 for the other layers. A weight
decay of 1× 10−4 was applied to all parameters. The learning rate was adjusted
according to a Cosine Annealing schedule, with a minimum value of 1 × 10−5.
The batch size was set to 8, and training was conducted for 400 epochs, with
early stopping employed to prevent overfitting. Extensive experiments on the
validation set determined the optimal loss weights as λ1 = 0.5, λ2 = 0.25, and
λ3 = 0.5.
Evaluation Metrics: Three quantitative metrics, i.e., Dice, Intersection over
Union (IOU), and Hausdorff Distance at the 95th percentile (HD95), were used
for evaluations.
Results: Six state-of-the-art segmentation methods were used as benchmarks to
evaluate the effectiveness of our proposed approach, including three CNN-based
methods (UNet [12], SegResNet [11], nnUNet [5]), two transformer-based meth-
ods (UNETR [4], SwinUNETR [3]), and one KAN-based method (UKAN [9]).
Each model was trained using its official settings to ensure optimal performance.
The quantitative results presented in Tab. 1 and the qualitative visualizations
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shown in Fig. 4 demonstrate the superior performance and robustness of our
method in terms of both regional accuracy and boundary alignment.

Table 1. Quantitative results on the external OCT dataset.

Methods Dice↑ HD95↓ IOU↑ FLOPS(G) Params(M)

UNet[12] 0.659± 0.203 38.10± 35.82 0.524± 0.214 0.05 0.04
SegResNet[11] 0.755± 0.126 43.87± 38.86 0.621± 0.148 0.99 0.39

nnUNet[5] 0.741± 0.143 54.08± 43.36 0.607± 0.161 25.47 1.83
UNETR[4] 0.721± 0.146 52.84± 38.90 0.582± 0.168 26.30 87.32

SwinUNETR[3] 0.754± 0.129 38.03± 37.02 0.621± 0.151 4.82 6.30
UKAN[9] 0.758± 0.126 44.96± 39.65 0.626± 0.151 1.76 6.36
Proposed 0.785± 0.114 27.16± 29.99 0.659± 0.137 5.07 12.29

Several ablation studies were performed to evaluate the contributions of the
key components in the proposed model, including dual coordinates, CCFFM,
and KAN block. The results in Tab. 2 show that using only Cartesian or polar
coordinates provides moderate results, while combining them slightly improves
segmentation by leveraging complementary spatial and geometric features. The
addition of CCFFM greatly enhances performance by effectively integrating
multi-scale features across coordinate systems. Incorporating the KAN block
further strengthens the framework through improved nonlinear modeling and
robustness. The complete framework achieves the best performance.

Table 2. Ablation study results.

Cartesian Polar CCFFM KAN Dice ↑ HD95 ↓ IOU ↑

✓ × × × 0.741± 0.159 43.58± 41.18 0.610± 0.177
✓ × × ✓ 0.749± 0.151 38.88± 39.82 0.616± 0.169
× ✓ × × 0.748± 0.133 43.99± 38.29 0.615± 0.155
✓ ✓ × × 0.744± 0.135 40.73± 41.79 0.612± 0.155
✓ ✓ × ✓ 0.755± 0.128 34.84± 35.13 0.621± 0.149
✓ ✓ ✓ × 0.779± 0.126 29.09± 26.05 0.653± 0.146
✓ ✓ ✓ ✓ 0.785± 0.114 27.16± 29.99 0.659± 0.137

4 Discussion and Conclusion

This study presents a novel segmentation algorithm specifically designed for fi-
brous cap analysis in carotid artery OCT imaging, addressing critical challenges
such as incomplete visualization of vascular structures, larger lumen diameters,
thicker vessel walls, and residual blood artifacts. By integrating Cartesian and
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polar coordinate domains, the proposed dual-coordinate framework effectively
captures complementary features to mitigate the effects of incomplete vascu-
lar walls and blood artifacts, enhancing segmentation accuracy and robustness.
The incorporation of a Kolmogorov-Arnold Network (KAN) block improves in-
terpretability and nonlinear modeling, while the Cross-Coordinate Feature Fu-
sion Module, filters and integrates dual-coordinate features, reducing interfer-
ence from redundant information. While demonstrating improved segmentation
accuracy and clinical interpretability, the method faces limitations in dataset
diversity and computational efficiency for real-time applications.

In conclusion, this work highlights the potential of intravascular OCT for
carotid artery imaging, presenting a tailored segmentation framework that ad-
dresses key anatomical and imaging challenges. The proposed method not only
advances the technical capabilities of OCT-based fibrous cap segmentation but
also underscores its clinical value in assessing plaque vulnerability, paving the
way for broader adoption of OCT in carotid artery diagnostics and treatment
planning.
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