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Abstract. Pulmonary artery-vein separation is critical for clinical diagnosis and 

treatment planning. However, existing pixel- or voxel-based methods often pro-

duce fragmented predictions, significantly reducing clinical confidence. To ad-

dress above problems, we propose Graph-PAVNet, a graph structure learning 

framework designed for PA/PV separation. First, our Light Vessel Structured 

Modelling (LVSM) module constructs a topology-aware vascular graph by lev-

eraging the inherent structural and semantic relationships within the vascular net-

work. LVSM shifts from traditional voxel-level predictions to topology-based 

branch-level inference, effectively resolving prediction discontinuity. However, 

it is challenging for a single graph to do the separation task. Due to this issue, we 

propose the Modal Feature Sampling (MFS) module. MFS enriches node features 

by constructing a hybrid Real-Virtual (RV) feature matrix that integrates multi-

source information. It also employs a dynamic feature weighting mechanism to 

achieve cross-modal complementarity, overcoming the challenges posed by 

modal discrepancies. For hierarchical inference, the Hierarchical Graph Atten-

tion Network (HGAT) stratifies nodes by vascular generation order (main to pe-

ripheral branches) and employs hierarchical masking to enforce structured inter-

layer propagation. At last, we introduce a novel metric: Branch Misprediction 

Coefficient (BMC) to better evaluate the clinical relevance and branch incon-

sistency. Experimental results show that our method outperforms existing ap-

proaches in both quantitative accuracy and clinical interpretability, offering a 

new paradigm for pulmonary artery-vein separation.1 

Keywords: Pulmonary Artery-Vein Separation, Graph Structures, Multimodal-

ity Feature Sampling. 
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1 Introduction 

Pulmonary arteries (PA) and veins (PV) serve critical functions in cardiopulmonary 

circulation by facilitating oxygen exchange and maintaining hemodynamic equilib-

rium. The accurate identification of pulmonary artery-vein holds paramount clinical 

significance for diagnostic evaluation and therapeutic management. However, due to 

the complex and variable morphology of the pulmonary vasculature, precise separation 

of PA/PV presents persistent challenges in medical imaging analysis. With the rapid 

advancement of deep learning methods, some new techniques have emerged as pre-

dominant solutions for PA/PV differentiation challenges, including convolutional neu-

ral networks (CNNs [1,2,3]), recurrent neural networks (RNNs [4,5]), and more ad-

vanced variants such as U-Net [6], V-Net [7], etc. These models, by learning from ex-

tensive medical imaging data, are capable of automatically identifying the image fea-

tures of PAs and PVs and thereby assisting clinicians in diagnostic tasks.  

Despite the successes of deep learning models in PA/PV separation, pixel-level pre-

diction methods face two critical limitations. First, these models often produce frag-

mented outputs, as seen in Fig. 1, particularly in low-contrast regions or fine vascular 

branches, leading to structural discontinuities and artifacts. Second, these errors prop-

agate into clinical applications: disrupted vascular topology compromises quantitative 

metrics (e.g., vessel diameter, bifurcation analysis), rendering the results unreliable for 

diagnostic or interventional planning.  

To address these challenges, researchers have begun to explore the integration of 

graph-based methods into medical image analysis. Unlike the grid-like structure pro-

cessed by CNNs [1,2,3], graphs represent vessels as interconnected nodes and edges, 

preserving continuity and hierarchical dependencies. Some studies have combined 

Graph Convolutional Networks (GCNs) with CNNs to improve segmentation outcomes 

[8]. For post-processing, graphs can also be used to connect disjointed segments [9]. 

Hybrid frameworks further demonstrate that incorporating geometric priors with deep 

learning can enhance the robustness of tubular structure segmentation. 

Based on the above analysis, this paper introduces the first end-to-end trainable 

framework for pulmonary artery/vein (PA/PV) separation. Our approach innovatively 

integrates vascular topology graphs with hierarchical graph neural networks. The key 

contributions are as follows: (1) Light Vessel Structured Modelling (LVSM): We 

encode the vascular skeleton as a sparse graph, where nodes represent bifurcation points 

or endpoints, and edges represent vessel segments. This significantly reduces compu-

tational complexity while preserving anatomical topology. It also supports interactive 

corrections by clinicians using graph editing tools. (2) Modal Feature Sampling 

(MFS): We focus on the authenticity of points and edges in the graph structure. Instead 

of relying solely on concrete image features and prior features, we transform the feature 

sampling to abstract connections between real and virtual nodes and edges. This en-

hances the representation of vascular structures. (3) Hierarchical Graph Attention 

Network (HGAT): We utilize a hierarchical gated propagation mechanism. Nodes are 

explicitly stratified based on the order of vessel generation (main branches to peripheral 

branches). A hierarchical mask controls inter-layer information exchange, ensuring that 

the network captures both local and global dependencies effectively.  
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Fig. 1. The challenges of prediction discontinuity. I. II. represent label and predic-

tion separately, while a-c shows different parts of vascular trees. 

2 Method 

The overall workflow is illustrated in Fig. 2, which sequentially comprises the follow-

ing key components: LVSM module constructs sparse vascular graph from vessel skel-

eton; MFS module extracts and integrates heterogeneous features from multiple 

sources, generating fused node embeddings; HGAT establishes a multi-level graph at-

tention architecture based on seed nodes for node attribute refinement. Next, we will 

explain each part in details. 

Fig. 2. The overview of Graph-PAVNet. 

 

2.1 Light Vessel Structured Modelling (LVSM) 

Inspired by Charbonnier et al. [10], after obtaining the vascular volume, we simplify it 

into a set of vessel skeleton points 𝑆 = {𝑠𝑘 ∈ ℝ3|𝑘 = 1, . . . , 𝑁}. The key nodes set 𝑉 =
{𝑣𝑖} is composed of bifurcation points 𝐵 = {𝑏𝑝} and endpoints 𝐿 = {𝑙𝑞}, i.e., 𝑉 =

𝐵 ∪ 𝐿. The edge set 𝐸 = {𝑒𝑖𝑗} is generated according to the following rules: 

 For each bifurcation point 𝑏𝑝 ∈ 𝐵，we search for adjacent key nodes 𝑣𝑗 ∈ 𝑉 along 

its connected paths. An edge 𝑒𝑖𝑗  is established if ∃ continuous path 𝑃𝑏𝑝→𝑣𝑗
⊆ 𝑆 

with min
𝑆𝑘∈𝑃𝑏𝑝→𝑣𝑗

𝑑(𝑆𝑘, 𝜕𝛺) > 𝜏, where 𝜏 denotes the vessel radius threshold and 𝜕𝛺 

represents vascular boundaries. To further simplify the graph structure and aggregate 

nodes, we construct a new graph 𝐺𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 = (𝑉,𝐸𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑)  after constructing 
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𝐺 = (𝑉,𝐸). The edge set 𝐸𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑  only retains the direct connections between bi-

furcation points and endpoints, defined as follows: 

 For each edge 𝑒𝑖𝑗 ∈ E, its corresponding simplified edge 𝑒𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 ∈ 𝐸𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑  

is defined as 𝐸𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 = {𝑒𝑖𝑗
𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 = (𝑣𝑖 , 𝑣𝑗)|𝑒𝑖𝑗 ∈ E}，where 𝑣𝑖 , 𝑣𝑗 ∈ V are the 

key nodes at the end of the edge. 

Through the above steps and formulations, the vascular skeleton is modeled as a 

simplified graph structure 𝐺𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 , which only keeps bifurcation points and end-

points. This significantly reduces data volume and computational complexity while pre-

serving the essential topological relationships of the vascular network. 

 

2.2 Modal Feature Sampling (MFS) 

In the task of PA/PV separation, relying on one single feature often fails to capture the 

complexity and diversity of vascular structures. Additionally, the simplification of 

graph structures in the previous step can lead to the loss of local morphological infor-

mation. Thus, it is necessary to supplement the model with additional features to ensure 

comprehensive information for accurate modeling. Inspired by discussions on prior 

knowledge in various studies(like centerline [11]), we propose a multimodal feature 

sampling strategy to mitigate the limitations of insufficient features and reduce the cou-

pling challenges between topological structure modeling and image feature representa-

tion. 

Feature Domain. This module constructs a comprehensive feature space for the sim-

plified graph  𝐺𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 = (𝑉, 𝐸𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑)  by defining a quadruplet feature 

space.  Specifically, we categorize feature information into four modal types based on 

the authenticity of nodes and edges: Features from real nodes and real edges (   ), Fea-

tures from real nodes and virtual edges (  𝑣  ), Features from virtual nodes and real edges 

( 𝑣 ), and Features from virtual nodes and virtual edges ( 𝑣𝑣). 

     captures the anatomical features of true vascular nodes, reflecting geometric and 

topological properties. The mathematical formulation is: 

   [𝑁1,𝐶1]
= [

 

|𝑁(𝑣𝑖)|
∑ 𝑐𝑜𝑠𝜃𝑖𝑗𝑘𝑣𝑘∈𝑁(𝑣𝑖)

, 𝕝𝑙𝑜𝑏𝑒(𝑣𝑖),∫ 𝑘(𝑠)𝑑𝑠,
𝜕𝜌

𝜕𝑠𝑃𝑖𝑗
|𝑠=0]     (1) 

where 𝜃𝑖𝑗𝑘 is the angle between adjacent edges, 𝕝𝑙𝑜𝑏𝑒 is the lobe label indicator 

function, 𝑘(𝑠) is the path curvature, and 𝜌 is the vessel radius. The notation [𝑁 ,   ] 
represents the dimensionality of the feature matrix. Additionally,     includes 3D co-

ordinates, branch directions, tracheal labels, etc. 

  𝑣 quantifies the differences between true vessels and their simplified representa-

tions, describing local deformations and morphological changes. The differential geo-

metric differences between original and simplified edges are calculated as: 

  𝑣[𝑁2,𝐶2]
= [

∥𝑃𝑖𝑗
𝑟𝑒𝑎𝑙−𝑃𝑖𝑗

𝑣𝑖𝑟𝑡𝑢𝑎𝑙∥

𝐿𝑖𝑗
,

∫𝑘𝑟𝑒𝑎𝑙(𝑠)𝑑𝑠

∫𝑘𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝑠)𝑑𝑠
, ∠(𝑛 𝑒𝑎𝑙 , 𝑛𝑣𝑖 𝑡𝑢𝑎𝑙)]      (2) 

where 𝐿𝑖𝑗 is the edge length, 𝑘(𝑠) is the path curvature, and n is the normal vector. 

 𝑣 extracts geometric features from the simplified graph, providing global topolog-

ical information. The definition is: 

 𝑣 [𝑁3,𝐶3]
= [∥ 𝑣𝑖 − 𝑣𝑗 ∥,

𝜌𝑖+𝜌𝑗

 
, ∠(𝑡𝑖𝑗 , 𝑧)]             (3) 
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where 𝜌𝑖 is the node radius, 𝑡𝑖𝑗 is the edge direction vector, and z is a global refer-

ence attribute. Additional features include Manhattan distance and the number of path 

nodes in the original graph. 

 𝑣𝑣 mitigates local texture loss via a 3D orthogonal plane Transformer. For each 

node 𝑣𝑖 = (𝑥, 𝑦, 𝑧), we sample 27-point neighborhoods across axial/coronal/sagittal 

planes: 

𝑃𝑎𝑥𝑖𝑠 = ⋃ (𝑥 + 𝑖∆𝑥, 𝑦 + 𝑗∆𝑦, 𝑧 + 𝑘∆𝑧)𝑖,𝑗,𝑘𝜖{− ,0, }          (4) 

A Transformer encoder with multi-head self-attention processes the 9-patch grids 

per plane: 

 𝑣𝑣[𝑁1,𝐶4]
=  ⨁𝑝= 

9  

𝑛
∑ 𝑇𝑖

(𝐿)𝑛
𝑖= ∈ ℝ9𝑑               (5) 

where ⨁ denotes channel-wise concatenation and 𝑇𝑖
(𝐿)

 represents final-layer token 

embeddings 

Feature Fusion. To integrate modality-specific information from virtual nodes and 

edges into real nodes and align features with diverse notations, we present a topology-

aware propagation mechanism. At first, for alignment of features from different parts, 

the features of virtual nodes and edges are broadcast into their connected real nodes 

through the graph structure.  

 𝑚 ∈ ℝ𝑛𝑚×𝑐𝑚 → ℝ𝑛1×𝑐𝑘    ∀𝑚 ∈ {𝑟𝑟, 𝑟𝑣, 𝑣𝑟, 𝑣𝑣}            (6) 

For final fused feature matrix 𝕏, we employ a gated hierarchical attention mech-

anism, where 𝛼∗ represents modality-specific attention weights computed through 

a learnable gating network. 

𝕏 =  𝛼  ∙    + 𝛼 𝑣 ∙   𝑣 + 𝛼𝑣 ∙  𝑣 + 𝛼𝑣𝑣 ∙  𝑣𝑣             (7) 

 

2.3 Hierarchical Graph Attention Network (HGAT) 

The hierarchical confusion in vascular segmentation, where conventional GATs [12] 

set nodes as the same place, motivates our design of HGAT—a model which empha-

sizes more on node relationships. To establish anatomically meaningful hierarchies, we 

initialize arteriovenous seed nodes at the pulmonary hilum and compute minimum hop 

counts via Breadth-First Search (BFS), generating hierarchical mask. It helps with: (1) 

as topological priors to amplify attention weights for proximal nodes during feature 

aggregation, and (2) as training curricula that phase-in node subsets from 0-hop to 2-

hop neighborhoods, emulating semi-supervised propagation dynamics. As seen as 

Fig2. III., building upon this hierarchy, the network architecture cascades three func-

tionally specialized GAT modules: initial feature fusion (ℎ𝑖 = [𝑥𝑖 ∥ 𝑚𝑖]) explicitly 

binds vascular semantics with topological positions(seed mask); subsequent local (0-1 

hop) and global (2+ hop) propagation layers progressively resolve spatial dependen-

cies, where hierarchical gating (𝑔𝑖 = 𝜎(𝑊[ℎ𝑖 ∥ 𝑐𝑖], 𝑐𝑖  is the hop) dynamically modu-

lates cross-hop information flow. By these steps (hierarchical encoding, progressive 

propagation, and dynamic gating), HGAT effectively addresses the hierarchy confusion 

in GATs. 
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2.4 Evaluation Coefficient 

To evaluate the topological accuracy and anatomical plausibility of PAV separation, 

we introduce a novel quantitative metric: 

Branch Misprediction Coefficient (BMC). 

𝐵𝑀 =
∑ ∑ 𝕀(𝐶𝑣 ≠𝐶𝑛)𝑝𝑟𝑒𝑑𝑛𝜖𝑁(𝑣)𝑣𝜖𝑠

 
                   (8) 

Where 𝑣 is a point in the set 𝑠, 𝑁(𝑣) is the neighboring nodes of 𝑣, 𝕀( 𝑣 ≠
 𝑛) is an indicator function that returns 1 if the attributes of two points are different. 

This coefficient reflects the severity of the prediction fracture. 

3 Experiments and Results 

3.1 Experiment Setup 

Datasets and Evaluation Metrics. The dataset used in the experiment is from the 

ISICDM2020 competition dataset [13] and consists of 24 sets of CT scans with slice 

counts ranging from 192 to 576, slice thicknesses ranging from 0.75 to 1.5 mm, a volt-

age of 120 kVp, and a tube current ranging from 88 to 215 mA. These CT scans are 

randomly split into 4 subgroups (each subgroup has 6 sets: 4 sets for Training, 1 set for 

validation, 1 set for Testing). The accuracy metrics include: S-Dice, BMC, Recall, 

PPV(Positive Predictive Value), and node prediction accuracy.  

Implementation Details. Our experiments were implemented on the basis of PyTorch-

Geometric and MATLAB. Specifically, the graph structure establishment and initial 

attribute calculation are realized in MATLAB, which are saved as txt files and then 

transferred to the Python project for subsequent feature fusion and node classification. 

The project was trained and tested on an NVIDIA Tesla T4 machine. In order to be fair, 

our comparison experiment also divided the training and testing into four subgroups, 

and the training and testing were carried out with the same data. Prior to the comparison 

experiment, we preprocessed the original CT images to [-1000,900] and cropped them 

to [128, 128, 128] size CT blocks using a sliding window. The optimizer of the model 

used the Adam optimizer, the initial learning rate was set to 0.005, and the loss function 

was set to a custom loss function weighted by the seed node loss function and the total 

loss function. In addition, we set a simple clustering function as postprocess for node 

prediction and the following results are the test results after clustering. 

Table 1. The results of ablation study for Feature Sampling. 

Feature(Acc[%]↑) Case-01 Case-02 Case-03 Case-04 Case-05 Case-06 

    0.7194 0.7423 0.5995 0.6607 0.6337 0.6461 

   +   𝑣 0.7684 0.7560 0.6269 0.6723 0.7542 0.6579 

   +   𝑣 +  𝑣  0.7840 0.8303 0.6488 0.5759 0.8956 0.6346 

   +   𝑣 +  𝑣 + 𝑣𝑣 0.8140 0.8581 0.7716 0.6819 0.8989 0.7993 

 

Ablation Study. To validate the effectiveness of the proposed multimodal feature sam-

pling mechanism, we conducted ablation experiments on four modalities, using node 
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accuracy as evaluation coefficient. The results are summarized in Table 1. From the 

experimental results, we can observe that for each case, when compared with     only, 

the feature matrix incorporating both virtual points and virtual edges all shows improve-

ment. The average accuracy increase of improvement is about 10%. This aligns well 

with our theoretical hypothesis: More comprehensive, More effective. But also, we 

found that there was a significant individualized difference in the data results, with a 

21.7% difference between the final results of case-01 and case-04. This also shows that 

the robustness of existing methods still needs to be improved. 

Comparison with State-of-the-Art Methods. In the context of PAV separation task, 

we also compared our approach with several state-of-the-art models, including 3D V-

Net[7], UNETR[14], nnUNet[15], TransUNet[16], U-KAN[17], and Mamba-

UNet[18]. The experimental results are compiled in Table 2, with evaluation metrics 

of Dice, PPV, Recall, and before-mentioned BFC for disruption, all in skeletonized 

form. It can be found that our graph-based framework demonstrates superior perfor-

mance on certain vascular structures (e.g., veins, with improvements of 1.6% in both 

Dice and PPV). Additionally, Recall has increased by 2.4% and 3.4%, respectively. 

This evidence substantiates that our approach not only matches but also surpasses ex-

isting methods in certain aspects. Notably, under the BFC coefficient assessment, our 

method significantly reduces the number of disruption artifacts to fewer than 20 in-

stances. This substantial improvement enhances the clinical applicability of our method 

and underscores the immense potential of graph-based learning in tasks with well-de-

fined topological relationships. 

Table 2. The comparison with the state-of-the-art models. 

Method S-Dice[%]↑ S-PPV[%]↑ S-Recall[%]↑ BFC↓ 

PA PV PA PV PA PV 

3D VNet 0.7164 0.5929 0.7051 0.7711 0.7280 0.6816 266 

UNETR 0.6692 0.6014 0.5833 0.8055 0.7847 0.6854 556 

nnUNet 0.9062 0.8859 0.9698 0.9478 0.8504 0.8316 74 

UNet++ 0.6315 0.6407 0.6088 0.6634 0.6560 0.6300 918 

TransUNet 0.7545 0.6785 0.8302 0.8528 0.6915 0.5643 650 

U-KAN 0.8673 0.8411 0.9270 0.9011 0.8149 0.7891 386 

Mamba-

UNet 
0.8992 0.8717 0.9866 0.9644 0.8261 0.7952 122 

Ours 0.8875 0.9025 0.9625 0.9805 0.8752 0.8657 12 

Furthermore, we projected the skeletonized results back into the three-dimensional vol-

ume to visually compare the outcomes with existing methods. To simulate potential 

manual corrections in clinical practice, here we employed an interactive approach to 

adjust the node prediction results before recreation. Fig. 3 illustrates the prediction out-

comes of the current best-performing model for the pulmonary artery and vein separa-

tion task, alongside a comparison of the classification of a small segment of peripheral 

vessels. It is evident that the predictions suffer from issues of prediction discontinuities. 

When compared to the ground truth labels, these discontinuities are not only present in 

the peripheral vessels but also in the main vascular trunks. Our method demonstrates 
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superior continuity in predictions, with fewer discontinuities in the branching struc-

tures. Additionally, the graph-based approach significantly reduces the number of in-

ference units, enabling the integration of human-assisted corrections. This not only en-

hances the precision of the predictions but also provides reliable support for clinical 

applications. 

 
Fig. 3. The 3D visualization of PAV separation. 

4 Conclusion 

In this paper, due to the unavoidable fragmented prediction results of existing deep 

learning models, we attempt to transform the inference unit into graph structure to im-

prove this situation. Based on this idea, we propose the first graph-centric deep learning 

framework in the context of pulmonary artery-vein separation tasks. This framework is 

sequentially divided into several essential parts: graph structure construction (LVSM), 

feature sampling and supplementation (MSF), and node prediction (HGAT). Building 

on existing experiments, we find that graph structures can serve as a new paradigm for 

PAV separation tasks. Compared to images, graph structures offer improvements in 

data volume, clinical interpretability, post-processing, and fracture as well. However, 

we also observe that when compared to classical image algorithm models, the differ-

ence between graphs during multi-graph training of our models can result in poorer 

generalization capabilities. Feature design and compression also require manual inter-

vention, which demonstrates the potential and hidden challenges of graph structures. 

Our next research direction is trying to enhance the robustness of multi-graph models 

and design more reasonable feature attributes to reduce manual intervention. 
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