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Abstract. Accurate T-staging classification of nasopharyngeal carcinoma (NPC)
is crucial for guiding individualized treatment strategies and predicting patient
prognosis. However, this task remains challenging due to the limitations of uni-
modal approaches, which often fail to capture the full complexity of NPC pro-
gression, and the severe class imbalance in clinical datasets, where early-stage
cases (T1 / T2 stage) are significantly underrepresented. In this paper, we pro-
pose a Prototype-Aware Dynamic Fusion Network (PDF-Net), a novel multi-
modal framework that integrates MR images with Epstein-Barr virus (EBV) DNA
tabular data to improve NPC T-staging classification. Our framework introduces
two key components: (1) the Dynamic Multi-Modal Alignment (DMMA) mod-
ule, which aligns MR imaging features with EBV DNA data to capture com-
plementary information across modalities, and (2) the Optimal Prototype-Aware
Transport (OPAT) module, which incorporates a Prototypical Constraint to en-
hance the representation of T2-staging features and mitigate class imbalance. To
the best of our knowledge, PDF-Net is the first framework to leverage EBV DNA
data as an auxiliary tool for T-staging classification, significantly improving ac-
curacy and robustness. Experimental results in a real clinical dataset demonstrate
that our approach outperforms state-of-the-art methods, achieving an accuracy of
0.8006 + 0.0488 and an AUC of 0.8191 + 0.0551 for T1C images, highlighting
its potential to advance NPC diagnosis and personalized treatment strategies.

Keywords: Nasopharyngeal Carcinoma - T-staging - Epstein-Barr Virus - Multi-
modal Fusion - Few-shot Learning - Optimal Transport.

1 Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy originating from the epithelial lin-
ing of the nasopharynx, with magnetic resonance imaging (MRI) serving as the pri-
mary modality for tumor assessment and staging due to its superior soft tissue contrast
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and noninvasive characteristics[1,2]. In the current, the clinical staging of NPC pre-
dominantly relies on the UICC/AJCC tumor-node-metastasis (TNM) staging system, in
which the T-staging (T1 — T4), reflecting the size, location, and extent of the primary
tumor invasion, plays a pivotal role in treatment planning[3, 4]. Since the treatment ap-
proach for NPC varies significantly across different stages, accurate T-staging is critical
for guiding individualized precision treatment and predicting prognosis.

In clinical practice, T-staging of NPC primarily depends on manual slice-by-slice
inspection of MR images, which is time-consuming, labor-intensive, and highly depen-
dent on the expertise of radiologists[1]. These challenges make it difficult to obtain
large-scale annotated MR image datasets, resulting in a scarcity of labeled data. Conse-
quently, this manual approach is neither efficient nor reliable enough to be considered
the gold standard for staging. These limitations underscore the urgent need to develop
effective computer-aided diagnosis (CAD) systems to improve the accuracy and effi-
ciency of NPC staging, ultimately supporting individualized precision treatment.

The clinical manifestations of NPC are highly diverse, with early-stage symptoms
often being subtle and nonspecific. As a result, the majority of patients are diagnosed
at locally advanced stages (T3 / T4 stage), while early-stage diagnoses (T1 / T2 stage)
remain relatively rare. This disparity creates a significant class imbalance in clinical
datasets, posing a major challenge for accurate staging. Models trained on such imbal-
anced data tend to exhibit a bias toward predicting advanced stages, resulting in poor
recognition of early-stage cases. Addressing this class imbalance is critical for improv-
ing the accuracy of early-stage diagnosis and enabling timely, personalized treatment
strategies. In recent years, few-shot learning (FSL) has demonstrated considerable po-
tential in medical image analysis, particularly in scenarios with limited sample sizes, by
enabling efficient feature extraction and classification with minimal data[5, 6]. Conse-
quently, FSL holds significant promise for enhancing early diagnosis in NPC, aligning
with our goal of early detection, timely treatment, and the implementation of individu-
alized precision medicine.

Although deep learning has made significant progress in NPC staging, most exist-
ing studies focus solely on unimodal imaging data, overlooking the rich information
contained in clinical tabular data[7, 8]. Vision-only approaches often misclassify T1/T2
cases due to their subtle features or fail to differentiate between tumor invasion, in-
flammation, and edema, leading to staging inaccuracies. Alongside imaging, plasma
circulating cell-free EBV DNA has emerged as a sensitive and specific biomarker for
EBV-associated NPC, which consists of short DNA fragments released by NPC cells,
can be detected through highly sensitive polymerase chain reaction (PCR)[9, 10]. How-
ever, the measurement of EBV DNA is challenging due to substantial interlaboratory
variability. Despite this, dynamic changes in EBV DNA levels during treatment have
been linked to therapeutic efficacy and prognosis, with complete biological response
(cBR) after multiple chemotherapy cycles serving as a strong predictor of long-term
outcomes|[11]. Given the close association between cfEBV DNA levels and NPC prog-
nosis, integrating this biomarker with imaging data can significantly enhance the ac-
curacy of T-stage prediction, providing a more comprehensive assessment of disease
progression and treatment response.
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Motivated by the above discussion, we propose a Prototype-Aware Dynamic Fu-
sion Network (PDF-Net), a novel multimodal framework that integrates MR images
with EBV DNA tabular data for the classification of NPC T-staging. Our main contri-
butions are as follows:

— We propose the Dynamic Multi-Modal Alignment (DMMA) module, which en-
ables structured fusion of MR images and EBV tabular data, allowing the model to
learn clinically relevant progression patterns beyond vision-only staging.

— We introduce the Optimal Prototype-Aware Transport (OPAT) module, which
incorporates Prototypical Constraint into the Optimal Transport framework to en-
hance T2 feature representation and mitigate class imbalance.

— To the best of our knowledge, PDF-Net is the first framework to incorporate EBV
DNA data as an auxiliary tool for T-staging classification, effectively leveraging
complementary information across modalities to significantly improve classifica-
tion accuracy.

2 Method

Figure 1 presents the overall framework of our proposed method for integrating MR
images and EBV DNA tabular data. The framework consists of three key components:
the PDF-Net, the DMMA module, and the OPAT module. These components work col-
laboratively to enhance T-staging classification by leveraging multi-modal data fusion
and representation learning.

2.1 Dynamic Multi-Modal Alignment (DMMA) module

Muti-modal Feature Extraction. We extract features separately from two modali-
ties: two sequences of MR images and EBV Dynamics tabular data. For images, we
utilize a Vision Transformer (ViT) to extract image features F; € R% from each MRI
sequence[12]. The extracted image features capture spatial and structural characteris-
tics of the tumor region, which are essential for accurate T-staging classification. For
tabular data, we employ the FT-Transformer to process the data and extract tabular fea-
tures F7 € R that represent the temporal dynamics and numerical relationships in the
EBYV values across the different chemotherapy stages[13].

Since these extracted features from different modalities and have different dimen-
sions, we project them into a unified 256-dimensional alignment space A using a linear
transformation layer before further processing. After projection, both sets of features
are transformed into F, € R"*?® and F,. € R"**® . The alignment is achieved through
the following linear transformations:

F, = A(F}) = linear(Fy), A € R4, (1)

Fp. = A(Fr) = linear(Fr), A € RT3, )
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Fig. 1. Overview of the proposed framework for T-staging classification. (a) The overall frame-
work integrating MR images and EBV DNA tabular data; (b) The PDF-Net; (c) The OPAT mod-
ule. In (c), color represents modality: blue for image, green for EBV tabular data, and orange for
the T2 prototype. Red arrows indicate alignment flows via optimal transport. Ball size reflects
different patients and is purely for visualization—not quantitative.

Tabular-to-Image Alignment. To align the image and tabular features, we employ
Optimal Transport (OT) to compute a cost matrix based on Euclidean distance, which
measures the pairwise similarity between the image features and the tabular features[ 14,
15]. Smaller distances indicate greater similarity in the shared feature space. The cost
matrix C; is computed as follows:

Cy = |IF; - Frlh. A3)

2.2 Optimal Prototype-Aware Transport (OPAT) module

Prototype Extraction. To address the class imbalance, particularly the underrepresen-
tation of T2-stage patients, we introduce a FSL approach[16, 17]. We use a Prototypical
Network to extract prototype features for the T2 stage[18]. The input to the net is the ax-
ial slice with the largest Region of Interest (ROI) area from the 3D MR volume for each
patient. This slice is selected as it contains the most significant pathological information
relevant to the T-staging task.
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Specifically, we fix the T2-stage samples and randomly sample T3- and T4-stage pa-
tients to construct a binary T2 vs. non-T2 classification task. We adopt few-shot episodic
training with 5 support and 5 query samples per class in each episode, maintaining a
1:1 balance between T2 and T3/T4 cases. For each training epoch, the T2 prototype is
computed by averaging the feature representations of all T2 samples in the support set,
and the model is evaluated on the query set. We select the prototype from the epoch that
achieves the best performance on the validation set as the final T2 prototype Fp € R,
which captures key characteristics of the T2 stage and enhances representation for this
minority class.

To ensure consistency across modalities, the extracted prototype features are pro-
jected into a 256-dimensional alignment space using the following transformation:

Fp = A(Fp) = linear(Fp), A € R, 4)

The prototype extraction process is performed separately from the OPAT module
and does not involve joint optimization. The resulting prototype is fixed and used during
OPAT training as a prior for guiding alignment.

Prototype-to-Image Alignment. Similarly, we compute the distance between proto-
type and image features, reinforcing alignment for the underrepresented T2 stage. The
cost matrix C; is computed as follows:

Cy = IF} = Fplb. 5)

Prototypical Constraint. The final cost matrix integrates T2 prototype constraints to
mitigate bias towards majority classes (T3 & T4 stage), improving T2-stage recogni-
tion:

C =Ci +AC5 = ||F; = Fyll + AIF; = Fpll3, (©6)

where A is a weighting parameter that controls the influence of the T2 prototype con-
straint. The addition of this constraint helps to mitigate the bias towards the majority
classes (T3 and T4), improving the model’s ability to predict the T2 stage more accu-
rately.

Optimal Prototype-Aware Transport. After computing the cost matrix,the Sinkhorn
Algorithm is applied to compute the optimal transport plan that minimizes the cost of
aligning tabular features to image features[19]. The optimization problem is formulated
as:

dor(Fy, F.Fp)= min (C,T), ()

Tevalid plans

where C is the total cost matrix, 7 is the transport matrix. The objective of the problem
is to minimize the cost associated with transporting the tabular features to the image
features. The result is the optimal transport matrix 7, which indicates the best align-
ment between the features from both modalities, taking into account both the spatial
and temporal aspects of the data. This optimal transport framework ensures that the
multimodal features are aligned in a way that minimizes the overall cost, leading to
improved feature fusion and more accurate T-stage classification.
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Muti-modal Feature Fusion. After obtaining the transport matrix, the aligned features
are computed by combining the image features F 1 and the tabular features F T according
to the transport matrix T :

Faligned = F1 + FTT- (8)

Finally, the aligned features are passed through a multi-layer perceptron (MLP)
classifier for the final T-stage classification. The addition of prototype constraints en-
sures that T2 patients are better represented in the feature space, thereby improving
classification performance for this underrepresented group.

3 Experiment

3.1 Experimental Settings

Dataset. To validate the effectiveness of our method, we conducted a study using data
from a single medical center, comprising a total of 1,634 NPC patients. For T-staging
classification, the dataset includes 113 T2-stage cases, 893 T3-stage cases, and 628
T4-stage cases. We collected T1-weighted imaging (T1w) and contrast-enhanced T1-
weighted imaging (T1Cw) sequence, along with the corresponding primary tumor mask
images. To prepare the input data, we multiplied the T1w and T1Cw images with their
respective mask images, effectively highlighting the ROIs corresponding to the primary
tumor. These masked images were then used as inputs to our model, ensuring that the
focus remained on the clinically relevant areas for accurate T-staging classification.
Additionally, we utilized clinical information in the form of EBV DNA levels, measured
at three time points: before chemotherapy, after one cycle of chemotherapy, and after
three cycles of chemotherapy. Among the 1,634 patients, only 802 had complete EBV
DNA measurements across all three time points.

Implementation Details. The MR images were resampled to a resolution of (2, 2, 2)
and resized to a uniform dimension of (112, 112, 112). All images were normalized to
ensure consistency. The dataset was split into training, validation, and testing sets in an
7:1.5:1.5 ratio, ensuring that the division was consistent for both MR images and EBV
DNA data.

The training process was divided into three independent stages. First, we trained
modality-specific encoders: a ViT for MR images and an FI-Transformer for EBV
DNA data. Features were extracted before the final classification layers and fixed for
downstream use. Second, Prototypical Network was also trained independently to ex-
tract a fixed T2 prototype, which was used in the OPAT module to guide the alignment
process. Finally, the OPAT module was trained using the extracted image and tabular
features along with the fixed prototype. During this stage, only the OPAT parameters
were updated.

Models were trained using the Adam optimizer with a learning rate schedule: le-4
initially, decayed to 5e-5 at epoch 50 and 2e-5 at epoch 100, for a total of 150 epochs.
The best checkpoint was selected based on validation ACC. All code was implemented
in PyTorch and executed on a NVIDIA RTX 4090 GPU.
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Table 1. Comparisons between our proposed method and other SOTA appoaches.

Method Images EBV T Tic
ACC AUC ACC AUC

ResNet18[20] v 0.6497+0.0279 0.7453+0.0165 0.6850+0.0346 0.7558+0.0382
ResNet34[20] v 0.6791+0.0485 0.7454+0.0246 0.7162+0.0.371 0.7524+0.0138
DenseNet121[21] v 0.6871+0.0340 0.7768+0.0285 0.7122+0.0336 0.7536+0.0357
ViT[12] v 0.717040.0368 0.7870+0.2222 0.7243+0.0320 0.7424+0.0362
BERT[22] v 0.5949+0.0346 0.5780+0.3250

FT-Transformer[13] v 0.6203+0.0295 0.5762+0.0271

CA[23] v v 0.6703+£0.0314 0.6900+0.0321 0.6209+0.0345 0.6626+0.0335
Concat v v 0.7403+0.0580 0.7443+0.0389 0.7431+0.0442 0.7485+0.0770
OT[14] v v 0.7659+0.0431 0.7802+0.0495 0.7736+0.0524 0.7522+0.0551
GMU[24] v v 0.7535+0.0313 0.778+0.0290 0.7592+0.0368 0.7645+0.0200
3MT[25] v v 0.7614+0.0385 0.7805+0.0453 0.7778+0.0669 0.7876+0.0684
AGGN][26] v v 0.7432+0.0320 0.7495+0.0218 0.7615+0.0403 0.7868+0.0186
Ours v v 0.7762+0.0317 0.7924+0.0183 0.8006+0.0488 0.8191+0.0551

Evaluation Metrics. We conducted comparative experiments and ablation studies
to demonstrate the advantages of our method. The performance was evaluated using
several metrics, including accuracy (ACC), area under the curve (AUC). These metrics
were chosen to comprehensively assess the model’s ability to classify the T stage of
NPC accurately and reliably.

3.2 Result and Analysis

We performed comparative experiments and ablation studies to demonstrate the advan-
tages of our proposed framework.

Comparison to Other Methods. For single image modality validation, we compared
our method with classical classification networks, including ResNet18, ResNet34[20],
DenseNet121[21], and ViT[12]. For clinical tabular data, we compared FT-Transformer[13]
with BERT[22] to assess the performance of structured tabular data versus textual data
representation. To validate the effectiveness of multimodal fusion, we compared our
method with several state-of-the-art approaches, including Cross Attention (CA)[23],
Concatenation, OT[14, 15], GMU[24], 3MT[25], and AGGN][26]. All multimodal base-
lines use the same ViT and FT-Transformer encoders as our method to ensure a fair
comparison.

As shown in Table 1, our model achieved the best classification performance. For
T1 images, the ACC and AUC were 0.7762 + 0.0371 and 0.7924 + 0.0138, respectively.
For T1C images, the performance further improved, with an ACC of 0.8006 + 0.0488
and an AUC of 0.8191 = 0.0551. For single image modality validation, ViT achieved
the best performance when using masked images as input, demonstrating its superior
ability to capture subtle features in the ROIs. For clinical data, results demonstrated
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Table 2. Ablation results of our method.

TI TIC
Method ACC AUC ACC AUC

W/ 0 OPAT, w/ o DMMA 0.7170+0.0368 0.7870+0.0222 0.7243+0.0302 0.7424+0.0326
w /0 DMMA 0.7432£0.0488 0.7458:£0.0549 0.7436+0.0629 0.7501+0.0637
w / 0 OPAT 0.7403+0.0580 0.7443+0.0879 0.74310.0422 0.7485+0.0770
w/oPC 0.7569+0.0431 0.7802+0.0915 0.77360.0524 0.7522+0.0951
Ours 0.7762+0.0371 0.792420.0138 0.80062:0.0488 0.8191+0.0551

that methods based on structured tabular data outperformed text-based approaches, un-
derscoring the advantages of structured numerical data over textual representations for
NPC T-stage classification. However, single-modality approaches, whether based on
masked images or EBV DNA tabular data, consistently underperformed compared to
multimodal methods, underscoring the importance of integrating complementary infor-
mation from multiple modalities. Additionally, other multimodal fusion methods either
ignore the significant dimensional differences between modalities or are designed for
prognostic tasks, which may not be directly applicable to the unique diagnostic scenar-
ios of NPC. These limitations often result in suboptimal alignment between image and
non-image feature spaces. In contrast, our PDF-Net effectively bridges the gap between
MR images and EBV DNA tabular data, enabling the network to learn more discrimi-
native features and significantly improving classification performance.

Ablation Study. We evaluated the importance of key components in our framework
through ablation experiments (Table 2). The results demonstrate that removing any
module leads to a decline in both ACC and AUC, highlighting the critical role of each
component in the overall performance of our model. Specifically, the removal of the
OPAT module caused the most significant performance drop, particularly for early-stage
(T2) cases, as it weakens the model’s ability to handle class imbalance and enhance the
representation of underrepresented T2-stage features. Similarly, removing the DMMA
module led to a substantial decrease in performance, as it disrupts the alignment of
MR image features with EBV DNA tabular data, limiting the model’s ability to capture
complementary information across modalities.

These results underscore the importance of both the OPAT and DMMA modules in
improving the overall accuracy and robustness of NPC T-staging classification. The
OPAT module is particularly critical for addressing class imbalance and enhancing
early-stage detection, while the DMMA module enables effective multimodal fusion
by aligning MR image features with EBV DNA tabular data. Additionally, the Proto-
typical Constraint (PC) contributes to refining feature representation, further supporting
the model’s performance.

4 Conclusion

We propose a PDF-Net for the multimodal T-staging classification of NPC for the first
time. This method effectively integrates MR images and EBV DNA tabular data, achiev-
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ing state-of-the-art classification performance. By leveraging the DMMA module, we
align MR image features with EBV DNA data to capture complementary information
across modalities. Additionally, the OPAT module enhances the representation of un-
derrepresented T2-stage cases, mitigating class imbalance and improving early-stage
NPC classification. Our framework pioneers a promising direction for multimodal di-
agnosis of NPC, offering significant potential for improving diagnostic accuracy and
personalized treatment strategies.
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