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Abstract. Creating fully annotated labels for medical image segmen-
tation is time-consuming and expensive, underscoring the need for effi-
cient labeling schemes to alleviate the workload. Eye tracking presents
a cost-effective solution, seamlessly integrating into radiologists’ work-
flows while offering task-relevant eye gaze supervision. However, due to
the inaccuracy and ambiguity of gaze, it may introduce erroneous su-
pervision and hinder the model’s ability to learn robust features. To
address these challenges, we propose the graph-based neighbor-aware
network (GNAN). The network constructs a graph structure from the
image, separating different categories of nodes by simulating the atten-
tion distribution during the diagnostic process, to learn image segmenta-
tion based on the radiologist’s gaze information. The GNAN comprises
neighbor-aware pseudo supervision (NAP) and graph contrastive decou-
pling (GCD). NAP utilizes the neighbor features of graph nodes to infer
pseudo-labels for uncertain regions, effectively compensating for the in-
accuracy in gaze supervision and further refining the supervisory signal.
GCD decouples the graph structure by maximizing the inter-class node
feature differences to distinguish between different categories, thereby
improving segmentation performance. Experimental results on the public
dataset demonstrate that GNAN outperforms state-of-the-art methods.
Our code is available at https://github.com/IPMI-NWU/GNAN.

Keywords: Eye-tracking - Graph Neural Network - Medical Image Seg-
mentation.

1 Introduction

Deep learning models have achieved impressive performance in medical image
segmentation tasks [15]. However, achieving competitive accuracy and robust
generalization typically requires a complete, large annotation [18]. Since manual
annotation of medical images requires the specialized expertise of clinical pro-
fessionals, the process is time-consuming and labor-intensive, making it costly
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and posing a significant barrier to the widespread clinical adoption of these tech-
nologies [29]. To mitigate this issue, weakly supervised learning methods have
gained popularity in medical image segmentation. Current strategies often rely
on bounding boxes [22], points [26], or scribbles [5] to provide sparse supervi-
sion. However, these methods typically require additional human effort, disrupt
clinical workflows, and increase the burden on radiologists [24].

Eye gaze, as a form of human-computer interaction data, can be automat-
ically captured using an eye tracker and seamlessly integrated into the daily
workflow of radiologists [1]. It provides insights into areas of focus during the
diagnostic process, facilitating the generation of dense annotations relevant to
the task. Compared to existing sparse annotation methods, gaze data offers a
more effective and practical approach to annotation [17].

Leveraging the rich expert knowledge embedded in gaze data, several stud-
ies have attempted to use it for medical image segmentation [4,20,10]. Xie et
al. [25] used gaze heatmaps to correct network errors, guiding the network and
improving segmentation accuracy. Wang et al. [21] proposed a cross-attention
transformer that incorporates gaze heatmaps into the model. While these meth-
ods treat gaze as auxiliary information, they are still constrained by their reliance
on full annotation. Zhong et al. [30] binarize gaze heatmaps at different thresh-
olds to generate multiple pseudo-masks, integrating multi-level human attention
to enhance discrimination. However, existing methods typically treat gaze as a
simple distinction between foreground and background, while its inherent in-
accuracy leads to erroneous supervision and segmentation bias. Additionally,
erroneous supervision further results in biased target locations and structures,
thereby negatively impacting segmentation performance.

To address these challenges, we propose a novel graph-based neighbor-aware
network (GNAN), which divides gaze into background, foreground, and uncer-
tain regions. The uncertain regions represent ambiguous attention areas that
are considered noisy and unreliable. The GNAN constructs a graph from the
image and separates different categories of nodes by simulating visual attention
distribution during the diagnostic process. GNAN features two special designs:
1) Neighbor-aware pseudo supervision (NAP) utilizes the neighbor feature of
graph nodes to infer pseudo-labels for uncertain regions, thereby enhancing the
supervision constraint. 2) Graph contrastive decoupling (GCD), which decou-
ples the graph structure by maximizing the inter-class node feature differences
to improve segmentation performance. The experiments on the public dataset
demonstrate that GNAN outperforms state-of-the-art methods.

2 Method

2.1 GNAN Architecture

As illustrated in Fig.1, the graph-based neighbor-aware network (GNAN) par-
titions the image into multiple patches, which are subsequently flattened into
vectors to form nodes for graph construction. GNAN learns attention distribu-
tion during the diagnostic process, categorizing nodes within the graph structure
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Fig. 1. Illustration of GNAN, dividing gaze into foreground, background, and uncertain
regions. GNAN consists of GNN blocks for graph construction and message passing. It
includes neighbor-aware pseudo supervision for pseudo-label estimation and enhanced
supervision, and also graph contrastive decoupling for better separating categories.

and identifying image segmentation patterns based on the radiologist’s gaze in-
formation. The GNAN architecture consists of GNN blocks and sampling layers.
Given an input image =, an augmented version x, with brightness-contrast en-
hancement and added random noise is first downsampled by a factor of four
through the stem layer. Then it passes through multiple GNN blocks, followed
by the sampling layer, skip connection, and a segmentation head to generate the
predicted maps y and ys,.

The GNN block in the GNAN extracts features by constructing graph from
the image, and performs aggregation and transformation operations [9]. The
feature map f € R¥*XWxC ig divided into a set of nodes V = {vy,va,- - ,un},
where each node corresponds to a pixel. For every node v € R®, the KNN
algorithm is applied to identify neighboring nodes N (v), and edges e are formed
between the nodes. The final graph is represented as G = {V, £}, where £ denotes
the set of edges. During message passing and feature extraction, G undergoes
aggregation and transformation operations, as follows:

G = FCy(GC(FC1(9))) +G, G =FCy(FC3(G)) + ¢, (1)

Aggregation Transformation

where FC(-) represents fully connected layers, and GC(-) denotes max-relative
graph convolutions [13].

To incorporate gaze, the raw gaze data is first processed for extracting fixa-
tion points, and then a 2D Gaussian filter is used to generate the attention map
ga- The background threshold and foreground threshold, 7, and 7, are applied
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to g, to generate the gaze map g into three regions: background (g, < 73), un-
certain region (7, < g, < 7), and foreground (g, > 7y), where the uncertain
region is considered noisy and unreliable. The segmentation loss is defined as:

ESeg - Epce(yvg) + Epce(ysa g)a (2>
1
[’Pce(yvg) = —W Z gilog(y:) + (1 — gi) log(1 — y;), (3)
€O i€ Reoor

where L. represents the partial cross-entropy loss and 2.0, denotes the set of
pixel coordinates within the certain region of the gaze map g.

2.2 Neighbor-Aware Pseudo Supervision

Inaccurate or ambiguous gaze can lead to erroneous supervision, negatively im-
pacting performance. To mitigate this issue, neighbor-aware pseudo supervision
(NAP) utilizes neighboring node information from uncertain regions to infer
their pseudo-labels, thereby refining supervision for areas with uncertain gaze
data. For the graph G;’ and G.' constructed at the bottom-most GNN block of
the network, which correspond to the input image x and the perturbed image
xs, respectively, the nodes are divided into two sets: 1) certain nodes, V. (in-
cluding foreground and background), and 2) uncertain nodes, V,,, based on their
locations in the gaze map g. NAP then applies a stability gate to partition the
uncertain node set V, into stable nodes Vg, defined as:

Vs = {vy € Vyu | co8(vy, 0y) > 75}, (4)

where v, denotes an uncertain node in G;/, and ©,, represents the corresponding
uncertain node at the same position in G”. The function cos(-) denotes cosine
similarity, i.e., cos(vy,vs) = m The threshold 74 is determined by the
average cosine similarity of all certain nodes, given by:

1 .
Te = mzvcevccos(vc,vc), (5)

where 0. denotes the node corresponding to v, at the same position in G”. For
each stable node vg, its pseudo-label is estimated based on the neighboring nodes

N (vs) as:

1

label(vs) = ]I(( Z cos(v,vg) - label(v)) > 0), (6)

Nl 47

where label(-) represents the node’s class, label(v) = 1 if v is foreground, —1 if
background, and 0 if uncertain. The indicator function I(-) evaluates to 1 if the
condition is satisfied, and otherwise —1. After estimating the labels for all stable
nodes, the pseudo-label PL is generated. The NAP loss is then defined as:

ENAP = Epce(yl/)/a PL) + ﬁpce(ygv PL)7 (7)
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where y; and y. are the predictions for each node in G; and G, respectively,
obtained from the pseudo supervision head.

To further strengthen the supervision of the uncertain regions, feature con-
sistency regularization is enforced. For uncertain nodes v, and their augmented
versions ©,, uncertain consistency (UC) is applied to implicitly ensure that the
model adheres to the smoothness and enhanced stability and reliability, which
can be formulated as:

1
Lyc=1—— Z €08(Vy, Uyy). (8)
|Vu| ’UuEVu

2.3 Graph Contrastive Decoupling

Incomplete gaze annotations lead to erroneous supervision, hindering the model’s
ability to learn discriminative inter-class features. To mitigate this issue, we pro-
pose graph contrastive decoupling (GCD), which enhances inter-class feature dis-
crimination in gaze maps and decouples features from distinct categories within
the graph structure. GCD first applies a projection head [6] to map the node
features of the graph G;' into a new space, producing G;. Subsequently, GCD
maximizes the inter-class while minimizing the intra-class feature discrimination,
as formulated below:

1 S log (Zuem exp(cos(v,v4)/T)

"W S ey, explcos(v,0')/7)

(9)

Lccp =
vEV)

where V), denotes the set of certain and stable nodes in the graph G, and V,
refers to the set of nodes that belong to the same class as v. The temperature
coefficient 7 controls the sharpness of the output probability distribution. The
goal of Lgcp is to decouple different-category nodes in G, producing G;’, which
increases the model’s ability to learn discriminative inter-class features. The
NAP and BAP modules are used exclusively during training; at inference time,
only the network is employed to segment the original image x.

During the upsampling stage, after each GNN block, the strategies of NAP,
UC, and GCD are applied to the graph structure. The final optimization objec-
tive for GNAN is formulated below:

L="Lseyg+MLuc+ Lnap + Lacp)- (10)

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

GNAN was evaluated on the GazeMedSeg dataset [30], which includes KvasirSEG
[12] and NCI-ISBI [2]. The KvasirSEG dataset contains 900 training and 100 test
images for polyp segmentation in gastrointestinal images. The NCI-ISBI dataset
is used for prostate segmentation from T2-weighted MRI images, containing
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Table 1. Comparison with different methods for five annotation types. Bold indicates
the best results among the weakly supervised methods and AT denotes the annotation
time corresponding to each annotation type.

Method Sup. | NCI-ISBI KvasirSEG
| Dice(%)1 Dice(%)1 AT|

A UNet [16] Full 80.58+0.48 82.12+1.11 18.7 hrs
A nnUNet [11] Full 81.5440.45 85.3740.48 18.7 hrs

BoxInst [19] Box 73.7841.15 65.7242.97 3.1 hrs

BoxTeacher [8] Box 75.6041.15 73.33+1.30 3.1 hrs

PointSup [7] Point 73.46+4.71 73.05+1.64 4.8 hrs

AGMM |23] Point 73.8641.26 75.5740.84 4.8 hrs
& AGMM [23] Scribble 72.7041.03 67.23+1.02 2.6 hrs
& CycleMix [27] Scribble 73.41+1.09 76.43+0.65 2.6 hrs
& ShapePU [28] Scribble 73.0641.18 77.2640.73 2.6 hrs
& ScribFormer [14] Scribble 74.31+1.29 75.69+0.48 2.6 hrs
B UNet [16] Gaze 74.75+1.58 73.74+0.94 2.2 hrs
B TransUNet [3] Gaze 75.46+1.20 70.3840.86 2.2 hrs
B nnUNet [11] Gaze 77.204+1.03 74.4240.92 2.2 hrs
B GazeMedSeg [30] Gaze 77.64+0.57 77.80+1.02 2.2 hrs
B Ours Gaze 80.33+0.24  79.32+0.39 2.2 hrs

789 training images and 117 test images. Segmentation performance across var-
ious methods was evaluated using the Dice coefficient. All experiments were
conducted on an NVIDIA 3080Ti GPU (12GB) using PyTorch. The Adam opti-
mizer was employed for training, with a learning rate of 7x 1075 and a batch size
of 8. The training process ran for 100 epochs. The background and foreground
thresholds, 7, and 7, were set to 0.3 and 0.6, respectively. In Eq.4, Eq.9 and
Eq.10, the stability threshold 75, the temperature coefficient 7 and the balance
coefficient A are set to 0.981, 0.1 and 0.5, respectively.

3.2 Comparison with State-of-the-Art Methods

Quantitative Results. The quantitative results are summarized in Table.1,
where five different supervision methods are evaluated: full annotation (black
triangle A), bounding box annotation (orange club &), point annotation (green
diamond ¢), scribble annotation (blue spade #), and gaze annotation (red square
). All methods are expressed as the mean and standard deviation of three
different seed runs. On the NCI-ISBI dataset, GNAN achieves state-of-the-art
performance among weakly supervised methods, with a Dice score of 80.33%, an
improvement of 2.69% over the previous best-performing method GazeMedSeg
(80.33% vs. 77.64%), and also demonstrates comparable performance to fully
supervised methods. Our method also achieves the highest Dice score of 79.32%
on the KvasirSEG dataset among weakly supervised approaches. The results
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Fig. 2. Qualitative comparison of GNAN with other state-of-the-art methods. Over-
segmented areas are marked in red, and under-segmented areas are marked in green.

Table 2. Ablation studies with respect to different settings, to evaluate the contribu-
tion of different components. Bold denotes the best Dice scores.

Lseg Luc Lnap Lacp ‘ NCI-ISBI KvasirSEG
v 77.4940.67 76.4240.59
v v 78.2940.60 77.09+0.46
v v 78.5340.64 78.03+0.42
v v v 79.11+0.55 78.5440.71
v v v 79.4040.55 78.62+0.56
v v v v 80.33+0.24 79.32+0.39

highlight the effectiveness of GNAN in leveraging imperfect gaze by synthesizing
PL from neighbors to enhance supervision while learning discriminative features.
Qualitative Visualization. Fig.2 presents qualitative results comparing GNAN
with other state-of-the-art methods under weak supervision across both datasets.
Red regions indicate over-segmentation, while green regions highlight under-
segmentation. Compared to different methods, our approach demonstrates re-
duced segmentation biases and superior performance. The improvement can be
attributed to GNAN’s ability to better handle gaze inaccuracy through NAP
and GCD, which allows for more precise feature learning.

3.3 Ablation Study

Contribution of Different Components. Table.2 presents an ablation study
to evaluate the contribution of each module in GNAN. The results reveal that
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Fig. 3. Visualization of the pseudo-labels generated by GNAN for uncertain regions
using neighborhood information.
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Fig. 4. Visualization of the graph structure constructed by GNAN. By introducing
GCD, the graph structure effectively separates the foreground and background, en-
hancing the robustness of the features.

incorporating the Lyc and Ly 4p modules leads to significant performance im-
provements, indicating that the uncertainty consistency regularization and the
strategy of introducing additional supervision via reliable PL effectively enhance
the model’s performance. Furthermore, adding the Lscp yields the highest Dice
score, confirming the effectiveness of GCD in decoupling the graph structure and
facilitating better segmentation performance.

Pseudo-Label Generation with NAP. Fig.3 illustrates the pseudo-label (PL)
generated by the NAP module during training, following the final GNN block
in GNAN. The results clearly show that NAP effectively estimates the labels
for uncertain regions, and the generated PL is closely aligned with the ground
truth. This demonstrates that NAP provides more reliable supervisory signals
for training uncertain regions, mitigating the potential errors associated with
supervision during binary mask generation. By leveraging neighboring node fea-
tures within the graph, NAP compensates for the inaccuracy associated with
gaze, improving the quality of the supervisory signal.

Decoupling the Graph Structure with GCD. Fig.4 showcases the success
of the GCD module in decoupling the graph structure. White and black nodes
represent foreground and background center nodes, respectively. Without GCD,
incomplete gaze supervision results in feature instability, causing unwanted cou-
pling between nodes (green nodes). This interference negatively affects the fea-
ture aggregation process, leading to background regions influencing foreground
regions, which in turn reduces segmentation accuracy. After introducing GCD,
the graph structure effectively decouples features of different categories, improv-
ing feature robustness and enhancing segmentation performance.
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4 Conclusion

We have proposed a novel graph-based neighbor-aware network (GNAN) to sim-
ulate attention distribution during the diagnostic process for separating various
categories of nodes within the graph, which enables image segmentation based
on radiologists’ gaze information. GNAN integrates neighbor-aware pseudo su-
pervision (NAP) and graph contrastive decoupling (GCD). In particular, NAP
utilizes neighboring features of graph nodes to infer pseudo-labels for uncertain
regions, effectively mitigating gaze supervision inaccuracy and enhancing super-
vision constraint. GCD decouples the graph structure by maximizing inter-class
node feature differences, thereby distinguishing between categories and enhanc-
ing segmentation performance. Experiments on the public dataset demonstrate
better performance of GNAN over state-of-the-art methods, by maintaining
high-quality segmentation even with limited annotation resources.
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