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Abstract. Accurate reconstruction of deformable soft tissues from en-
doscopic stereo videos is essential to improve surgical navigation and au-
tomation in robot-assisted image-guided procedures. While recent Gaus-
sian splatting techniques achieve real-time rendering with impressive re-
sults on endoscopic datasets, conventional 3D Gaussian splatting meth-
ods suffer from volumetric biases, leading to inaccuracies in 3D geometry
and depth estimation. To overcome these limitations, we propose Endo-
Planar, a novel deformable planar-based Gaussian splatting approach. By
flattening volumetric Gaussians to a 2D plane, our method enables unbi-
ased depth computation and normal map estimation, which are difficult
to achieve with traditional ellipsoidal Gaussians. Furthermore, we intro-
duce a regularization strategy for smooth planar-derived normal maps to
refine surface quality. Additionally, we enhance model initialization using
Gaussian mixture-based background segmentation, improving the repre-
sentation of unseen objects and accelerating convergence. We evaluate
EndoPlanar on two standard benchmarks, EndoNeRF and StereoMIS,
demonstrating promising performance by outperforming all baselines in
reconstruction quality with PSNR, of 34.51 dB while maintaining real-
time inference speeds of 307.5 FPS.

Keywords: 3D reconstruction- Endoscopic reconstruction: Deformable
scene - Planar-based Gaussian Splatting.

1 Introduction

Robotic-Assisted Minimally Invasive Surgery (RAMIS) relies on stereo endo-
scopes to capture dynamic tissue scenes, crucial for spatial awareness, navigation,
and other downstream applications [3, 11,12, 18]. However, complex endoscopic
environments pose substantial challenges for traditional 3D reconstruction meth-
ods, especially under limited fields of view and occlusions caused by instruments.

Recent scene reconstruction approaches leverage neural radiance field (NeRF)
[10], combining ray marching and MLPs for implicit scene representation. For
endoscopy applications, EndoNeRF [14] pioneered NeRF-based endoscopic re-
construction, while EndoSurf [17] improved surface quality through integration
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of the Surface Density Field. Despite advancements, these methods face signifi-
cant computational demands. Hexplane [1] partially addresses this by encoding
spatio-temporal features at sample points, reducing training time for dynamic
scenes, although ray marching remains computationally intensive.

To address this limitation, 3D Gaussian Splatting (3DGS) [7] emerged as
a solution with faster training and rendering speeds by representing scenes as
Gaussian point clouds and employing rasterization. GaussianFlow [15] and 4DGS
[8] extended this approach to dynamic scenes, while Endo4DGS [6] and Endo-
Gaussian [9] adapted it for deformable soft tissues using Hexplane representa-
tions with tiny MLPs. Deform3DGS [16] further enhanced computational effi-
ciency through learnable linear combinations. However, Gaussian-based methods
still face geometric inaccuracies—their ellipsoidal nature can lead to suboptimal
depth estimation and complicated surface normal calculation. To address these
limitations, recent strategies such as PGSR [2] and 2DGS [5] propose flattening
the representation and using planar equations for more precise depth mapping.

Building upon these insights, we propose EndoPlanar, a real-time, deformable
planar-based Gaussian splatting framework for reconstructing soft tissues from
endoscopic stereo videos. Evaluations on the EndoNeRF and StereoMIS bench-
marks demonstrate that EndoPlanar achieves state-of-the-art reconstruction fi-
delity at real-time speeds (307.5 FPS). The key contributions of our work include:

— Initialization with MOGF: Mixture of Gaussians Fusion strategy combines
MOG?2 background subtraction with foreground masking to initialize point
clouds, enhancing convergence speed and representation of unseen objects.

— Planar-Based Deformable Gaussians: Flatten 3D Gaussians into 2D plane
representations to eliminate volumetric bias, improving the accuracy of ren-
dered depth maps and enabling unbiased surface normal estimation.

— Edge-Aware Normal Regularization: Regularization scheme compares ren-
dered normals with local plane normals derived from depth maps, weighting
with depth gradients to preserve sharp surface boundaries.

2 Method

In this section, we first describe the preliminary methods employed in this work,
3D Gaussian Splatting and the Flexible Deformation Model (FDM) (Section 2.1).
Next, we introduce our model, EndoPlanar, as illustrated in Fig. 1. We first ap-
ply Mixture of Gaussians Fusion (MOGF) across all frames to detect motion
and fill occlusions, producing a canonical point cloud (Section 2.2), which is
then converted into an initial set of Gaussians’ attributes, representing the re-
constructed 3D scenes. Next, we deform these Gaussians from time 0 to time
t using FDM, followed by unbiased depth rendering to obtain a color image, a
depth map, and a normal map (Section 2.3). Finally, the Gaussians’ attributes
are optimized according to our training objective (Section 2.4).
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Fig. 1. Overview of the EndoPlanar pipeline. The approach consists of three main
stages: (a) Point Cloud initialization, (b) Flexible Deformation Modeling, and (c) Un-
biased Depth Rendering and Optimization.

2.1 Preliminaries

3D Gaussian Splatting [7]: It explicitly represents a 3D static scene as a set of
3D Gaussians {G;}}_,. Each Gaussian contains five sets of learnable rendering-
related attributes: a center p; € R3, a rotation matrix R; € R3>*3, a scaling
matrix S; € R3*3, an opacity o;, and spherical harmonic coefficients (SH) for
view-dependent color. The color map C in Fig. 1 can be calculate using a-

blending:
i—1

ézi(ciain(l_%))’ (1)

—

where ¢; is the color derived from the SH coefficients, and «; is the opacity
contribution computed by evaluating the 2D Gaussian X! scaled by o;.

Deformable Gaussian Splatting [16]: To extend Gaussian Splatting into 4D
settings, we adopt the Flexible Deformation Modeling (FDM) scheme, as shown
in Fig. 1. This approach explicitly represents the temporal deformation fields
of Gaussians’ attributes. Specifically, for each Gaussian, its center p;, rotation
matrix R;, and scaling matrix S; are associated with a deformation field modeled
as a linear combination of Gaussian basis functions. Each basis function b(¢; 6, o)
is defined as b(t;0,0) = exp(—(t — 6)?/(20?%)), where 6 and o are learnable
parameters that control the center and width of the function. Given a learnable
amplitude w; for each of B basis functions, we form the final deformation field
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¥ (t) and add the result back to the base Gaussians at time 0, thus obtaining the
deformed Gaussians at time ¢. Formally, 1(¢) is defined as

B
G(t) = w;b(t;05,05). (2)
i1

2.2 Point Cloud Initialization

We introduce Mixture of Gaussians Fusion (MOGF), an extension of Motion-
Aware Point Fusion (MAPF) [16]. First, we replace threshold-based motion
detection with a statistical background-subtraction approach using Mixture of
Gaussians (MOG?2) [19] by updating the distribution over all frames except the
first one. We then apply the learned statistical background model to the first
frame in order to detect subtle motions. Second, we retain the occlusion filling
workflow from MAPF to reconstruct areas occluded by surgical instruments.
Starting with a canonical point cloud from the initial frame, we project the
combined result of these two components into 3D:

P; =K', D;, (I; © M), (3)

where K, P;, I;, D;, and M; represent the intrinsic camera matrix, 3D point
cloud, 2D pixel coordinates, depth map, and valid mask of the i-th frame, re-
spectively, with ® denoting element-wise multiplication. Finally, we merge these
projections with the initial cloud to form the final canonical point cloud.

2.3 Deformable Planar-Based Gaussian Splatting

3D Gaussians represent ellipsoidal shapes, making direct estimation of geomet-
ric attributes challenging. To address this, [2,5] proposed flattening each 3D
Gaussian into a 2D plane, enabling unbiased estimation of normals and depth.
However, their method is designed for static scenes, whereas endoscopic scenes
involve soft tissues undergoing deformation over time. Therefore, we extend their
method to a 4D setting to handle these time-varying deformations.

Flattening Deformable 3D Gaussians. Each Gaussian is defined by X; =
R;S; S R], where R; is an orthonormal basis and S; = diag(si, s2,s3). To

enforce progressive flattening over time, we minimize the smallest scale factor:

Locating(t) = ||min(s1(2), s2(t), s3(®)) ||, si(t) = exp(sio +wi(1)).  (4)

Here, s; ¢ are the base scale factors at ¢ = 0, and v, (t) represents the deformable
field that modifies the scale factor over time. We use exponential scaling to ensure
positivity and initialize s3 o to a large negative value (-10°) to make s3(t) close
to zero for numerical stability and fast convergence.
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Unbiased Depth Rendering. After using FDM to deform the Gaussians to
time ¢, we render normals and depth using their deformed attributes. For Gaus-
sian 4, we select the axis with the smallest scale factor as its normal vector, n; ,
and flip it if necessary to ensure that it always faces away from the camera. The
plane distance is d; ;, = (ch<ﬂi,t — TC)) . (ch ni’t), where p; 4 is the deformed
Gaussian center at time ¢, T, is the camera center in the world coordinates and
R, is the rotation from the world to the camera coordinates. We then obtain
the final normal map IN and plane distance map D, through a-blending:

i—1 i—1

N N
]/V\:Zchni,taiH(l—aj), DJ_:ZduaiH(l—aj). (5)
=1

i=1 j=1 =1

For a pinhole camera with intrinsic matrix K, each pixel p = [u, v] corresponds to
aray 7(p) = K~ [u,v,1]7. The final depth map is then computed by intersecting
these rays with the blended plane. Formally,

D(p) = = (6)

2.4 Optimization

Normal Surface Regularization: To refine surface normals, especially in re-
gions lacking direct supervision, we introduce a regularization term that enforces
consistency between the rendered normals N (p) with a local plane normal Ny (p)
derived from the depth map. For each pixel p, we sample four neighboring pixels,
project their depths into 3D points {Pj}gzo, and compute:

(P~ Py) x (Ps— P)
(Pr—Py) x (P — P

Nd(p) = || (7)

Because color edges in endoscopic images may not reflect true surface bound-
aries, we employ an edge-aware weight based on the ground-truth depth gradient.
Let D be the ground-truth depth map. Our loss is:

»Cnormal = % p;v(l - ||VD(p)||>2 HNd(p) - ]/V\(p)’

17 (8)

where W is the set of valid pixels. This weighting reduces the penalty in re-
gions with large depth gradients, thus preventing over-smoothing of sharp sur-
face boundaries.

Training: Given a tissue mask M, we supervise the reconstructed scene using
ground-truth color images C' and stereo depth maps D), in addition to our normal
regularization. Concretely, we render both color C' and depth D from the current
reconstruction at each training iteration, then impose the following losses:

Lo =|Mo(@-C) . £p=|Mo@D =D
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Given Ac¢, Ap, Anormal, and Agcaling balancing weights, our training objective is

E - )\C EC + )\D ED + >\normal ﬁnormal + )\scaling ﬁscalinga (10)

3 Experiment

3.1 Experimental Setup

We evaluated our method on EndoNeRF [14] and StereoMIS [4]. For StereoMIS,
we sampled content-driven segments (180-300 frames) from videos P2 6, P2 7,
and P3, ensuring each segment captured a complete action. We then applied
[13] to generate pseudo ground-truth depth. Each scene’s frames were split 7:1
for training and testing. We measured rendering quality using PSNR, SSIM,
and LPIPS, and evaluated surface quality with depth RMSE. We also recorded
training time and rendering speed. Our model uses 17 learnable Gaussian basis
functions for FDM and trains for 3,000 iterations with an initial learning rate of
1.6 x1073. As the depth loss £p was initially much smaller than the photometric
loss L, we tuned Ap on selected EndoNeRF video, increased Ap until the depth
metrics ceased to improve, then applied Ap uniformly on all datasets. We also
use large Agcaling to ensure properly flattening of Gaussians. The final weights
for Ao, AD; Anormal; Ascaling are 1, 5,0.0085, and 100, respectively. All experiments
were implemented in PyTorch on an NVIDIA RTX A5000 GPU.

Table 1. Quantitative results across subsets for each dataset. Our model, EndoPlanar,
is listed in the ‘Ours’ row. Bold values highlight the winner for each metric.

Dataset Method PSNR{ SSIMT LPIPS| RMSE| Train(s)] FPSt
EndoNeRF 34.20 93.50 0.1556 2.09 ~23,800 0.025
EndoSurf 34.84 95.39 0.1125 1.77 ~43,200 0.023

EndoNeRF |EndoGaussian| 37.88  96.09 0.0510 2.16 146 145
Deform3DGS | 38.59 96.40 0.0531 2.41 60 340
Ours 38.67 96.61 0.0461 1.64 73 339
EndoNeRF 27.88  73.47 0.3490 3.53 ~23,800 0.025
EndoSurf 28.02  78.92 0.2870 3.53 ~43,200 0.023

StereoMIS |EndoGaussian| 29.63  81.39 0.2550 5.08 155 131
Deform3DGS | 30.30 83.71 0.2223 5.20 62 303
Ours 30.41 84.59 0.2073 3.37 89 276

3.2 Main Results

We evaluated our proposed method by comparing its performance with other
state-of-the-art approaches: NeRF-based (EndoNeRF [14] and EndoSurf [17])
and Gaussian Splatting-based (EndoGaussian [9] and Deform3DGS [16]) meth-
ods. As shown in Table 1, our method achieves superior scores in PSNR, SSIM,
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Table 2. An ablation study where each proposed strategy is progressively added to
our model’s backbone. Bold values highlight the best performance for each metric.

Method PSNR{ SSIM?t LPIPS] RMSE] Train(s)] FPST
MAPF 3855 9644 0.0495  1.58 65 381
MOGF 38.86 96.70 0.0422 1.51 71 342
MOGF+ Loormal 38.67  96.61  0.0461  1.64 72 339

LPIPS, and depth’s RMSE compared to both NeRF-based and Gaussian Splatting-
based methods in both datasets. In terms of speed, our method maintains train-
ing times (73-89s) close to Deform3DGS (60-62s) and is significantly faster than
EndoGaussian (146-155s), EndoNeRF (6.5h) and EndoSurf (12h). The render-
ing rates also remain highly competitive, ranging from 276 to 339 frames per
second, on par with Deform3DGS (303-340 FPS) and surpassing EndoGaussian
(131-145 FPS). Consequently, our method delivers state-of-the-art reconstruc-
tion quality while preserving training and rendering speeds that are suitable for
real-time applications.

EndoNeRF EndoSurf EndoGaussian Deform3DGS

EndoNeRF

RMSE : 2.09. vISE : 2.87 SE : 2.67 RMSE : 1.89

PSNR ; 2947

SteroMIS

Fig. 2. Qualitative comparison with EndoNeRF, EndoSurf, EndoGaussian, and De-
form3DGS. The boxed image is a zoomed-in view showing details in the focused area.

To provide additional qualitative results, we provide qualitative comparisons
of several rendered scenes in Fig. 2. It can be observed that our method is better
at preserving fine appearance details and offers improved interpolation in oc-
clusion areas, where tissues are temporarily obscured by surgical tools. In Fig.
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3, we visualize surface quality using a normal map generated from the recon-
structed mesh of StereoMIS, P3. As shown, our method provides smoother and
more coherent surfaces than the other Gaussian Splatting—based methods, which
exhibit pronounced noisy surfaces. The NeRF based approaches, by virtue of
their implicit MLP representation, typically offer smoother surfaces than Gaus-
sian splatting-based methods. However, our approach still surpasses EndoNeRF,
particularly in regions where tools occlude underlying tissue, although the per-
formance gap is narrower than with the other Gaussian Splatting baselines. Fur-
thermore, our method achieves surface quality comparable to EndoSurf, which
incorporates additional MLPs for a dedicated Surface Density Field. Despite En-
doSurf’s emphasis on fine-grained surface modeling, our approach achieves sim-
ilar surface smoothness while maintaining higher photometric rendering quality
and computational efficiency.

EndoNeRF EndoSurf EndoGaussian  Deform3DGS Ours w/o Looma  Ours with Looma

Vi W Y Yo | Yo Yo

Fig. 3. Qualitative comparison of a normal surface reconstruction methods compared
to existing techniques and ablation of normal loss. The first and second rows show the
same model from slightly different viewpoints.

3.3 Ablations

We perform comprehensive ablation studies with EndoNeRF dataset, examining
two key components of our approach: initialization strategy and normal regular-
ization. As shown in Table 2, both components contribute significantly to our
method’s performance. For initialization, we compare the MAPF method from
[16] with our MOGF initialization. Our approach achieves superior scores across
all metrics, with only a slight reduction in training and inference speed. This
trade-off results from generating motion awareness initial sparse point clouds,
leading to a higher number of Gaussians overall. Furthermore, we examine the
impact of our normal regularization term L, ,rmq; by comparing models trained
with and without it. Incorporating L, rma leads to marginal decreases in ren-
dering metrics (Table 2) but produces noticeably more coherent surfaces (Fig. 3).
Thus, while enabling L,,ormq; involves a slight trade-off in appearance metrics,
it significantly enhances surface fidelity, which is critical for accurate endoscopic
visualization.
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4 Conclusion

In this paper, we presented EndoPlanar, a deformable planar-based Gaussian
splatting framework for endoscopic stereo video reconstruction. By flattening
3D Gaussians and leveraging our unbiased depth rendering pipeline, we mitigate
volumetric biases and achieve more accurate surface geometry. Our Mixture
of Gaussians Fusion (MOGF) accelerates convergence and enhances rendering
quality, while our edge-aware normal regularization improves surface detail, en-
abling reliable and efficient endoscopic reconstruction. Evaluated on EndoNeRF
and StereoMIS benchmarks, EndoPlanar achieves state-of-the-art reconstruction
quality while maintaining training and rendering speeds suitable for real-time
applications.

Disclosure of Interests. The authors have no competing interests to declare that
they are relevant to the content of this article.
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