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Abstract. Gliomas, especially high-grade gliomas, have a high mortal-
ity rate. O6-Methylguanine-DNA Methyltransferase (MGMT) status is
crucial for gliomas treatment and prognosis. Traditional diagnosis relies
on invasive tissue analysis, which is often infeasible for high-risk patients.
While machine learning and deep learning methods using multi-sequence
Magnetic Resonance Imaging (MRI) images and radiomics provides a
non-invasive alternative, existing methods suffer from low accuracy and
poor generalization due to challenges in extracting features from the in-
tegrated multi-sequence representation. To address this issue, we propose
a Multi-modal feature extraction and Global-aware feature Graph-based
deep learning network (MGG-Net), integrating convolutional neural net-
work (CNN) and graph convolutional network (GCN) for multi-modal
and multi-scale feature learning. Specifically, MGG-Net consists of mul-
tiple CNN-GCN stages, responsible for processing MRI image features
and radiomic features at different scales. CNN blocks are used to extract
fine-grained and sequence-specific local features from each MRI sequence.
These features are then fed into a GCN, which models long-range depen-
dencies and extracts high-level global representations. Finally, the fused
multi-scale features extracted are used for classification. Experimental
results demonstrate that MGG-Net outperforms previous approaches,
effectively leveraging multi-scale and multi-modal information for im-
proved MGMT status classification.

Keywords: Deep learning - Graph convolutional network - Glioma -
Multi-sequence MRI.
1 Introduction

Gliomas [1] are primary brain tumors derived from neural glial stem or progen-
itor cells. Among them, World Health Organization (WHO) grade IV glioblas-
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toma (GBM) is highly malignant [2]. A crucial prognostic biomarker, O6-methy-
lguanine-DNA methyltransferase (MGMT), plays a key role in treatment re-
sponse—its methylation-positive status suppresses gene expression [3], increas-
ing sensitivity to temozolomide therapy [4]. Thus, MGMT methylation testing
is essential for clinical decision-making. However, current detection methods re-
quire tissue samples obtained through surgery or biopsy, posing significant risks.
Therefore, a safe and effective non-invasive detection strategy is urgently needed.

Multi-sequence magnetic resonance imaging (MRI) [5] and radiomics [6] offer
non-invasive methods for MGMT status diagnosed by capturing tumor anatomy
and function. Multi-sequence MRI provides structural and physiological details,
while radiomics extracts high-throughput features reflecting tumor heterogene-
ity. Although multi-sqeuenced MRI and radiomics have been widely explored,
existing methods struggle to fully utilize complementary information. Prior stud-
ies fall into machine learning and deep learning approaches. Machine learning [7—
9] relies on handcrafted features, limiting scalability and adaptability. Deep
learning, including convolution neural networks (CNNs) [10-12] and Transform-
ers [13], address these issues but have their own limitations. CNNs process images
as structured grids, enabling the extraction of single-sequence MRI features but
struggling to capture fused-sequence MRI representations [14|. Transformers pro-
cess images as linear sequences, computing token similarities. However, different
MRI sequences, despite representing the same medical entity, may encode in-
formation differently, making multi-modal fusion challenging. These limitations
highlight the need for a more effective fusion strategy.

To address these limitations, we propose a Multi-Modal Feature Extraction
and Global-Aware Feature Graph-Based Deep Learning Network (MGG-Net).
MGG-Net consists of two key components: Multi-modal Feature Extraction
(MFE) and Global-Aware Feature Graph (GAFG). The MFE module leverages
CNNs to extract features from individual MRI sequences, overcoming the lim-
itation of CNNs in capturing fused sequence representations. Meanwhile, the
GAFG module employs graph convolutional networks (GCNs) [15] to construct
adaptive feature graphs that encode spatial relationships and intra-tumor de-
pendencies. Unlike Transformers, which compute token similarities in a fixed se-
quence, GAFG dynamically models relationships between MRI sequences, adapt-
ing to their differing information representations. By integrating CNN-driven lo-
cal feature extraction with GCN-based global aggregation, MGG-Net effectively
addresses the fusion challenges faced by prior methods. This dynamic feature
refinement across graph nodes enhances cross-modality interactions and intra-
tumor feature propagation, allowing the model to focus on the most informative
tumor regions, such as necrotic cores, which are crucial for MGMT status classi-
fication. Ultimately, MGG-Net overcomes the rigid grid constraints of CNNs and
the limitations of sequence-based modeling in Transformers, leading to improved
classification performance.

Our main contributions are summarized as follows:
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— In each MFE module, we process the four MRI sequence separately and
incorporate their radiomic features, capturing local representations at each
scale before downsampling for the next stage.

— The GAFG module applies dynamic axial graph convolution at each scale to
aggregate global contextual relationships, ultimately providing a novel and
non-invasive approach for MGMT status classification.

2 Methodology

This study proposes MGG-Net, as shown in Figure 1 consisting of MFE and
GAFG modules. The MFE module extracts local information by independently
processing four MRI sequences (T1lc, FLAIR, DWI, SWI) using feature extrac-
tor and integrating radiomic features for each sequence. The extracted sequence-
specific features are passed to the GAFG module, where they are further inte-
grated to capture inter-modality dependencies. MGG-net adopts a multi-scale ar-
chitecture with four cascaded stages, where features are progressively refined. Fi-
nally, Global Average Pooling (GAP) fuses multi-scale features, and a lightweight
3D convolution serves as the MGMT classification head, determining whether
MGMT is methylated.
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Fig.1: The MGG-Net framework consists of the Multi-modal Feature Extraction
(MFE) and Global-Aware Feature Graph (GAFG) modules. MRI sequences (Tlc,
FLAIR, DWI, SWI) are processed independently, with radiomic features embedded
into each sequence at every stage. Extracted features are fused and structured into a
graph to model inter-modal and spatial relationships, enabling MGMT classification.
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2.1 Multi-modal Feature Extraction (MFE)

The MFE module consists of four parallel Feature Extraction Streams, each pro-
cessing one MRI sequence (T1lc, FLAIR, DWI, SWI). As shown in Figure 2, (a)
illustrates 3D stem layer (Stem3D) used for initial feature extraction, while (c)
presents the Feature Extractor. The feature extractor consists of a Depthwise
Separable 3D Convolution (DWSConv) [16] for local feature extraction and an
Inverted Residual (IR) connection for feature refinement. Given an input MRI
volume X,,, € RCnxHxWxD ‘where m denotes different MRI sequences, Stem3D
extracts preliminary features and downsamples the input, producing X/ . This
is then processed by DWSConv, which sequentially applies pointwise, depthwise,
and pointwise convolutions. A pointwise convolution W € R1X1X1XCinXCmia ox_
pands the channel dimension, followed by batch normalization and GeLU acti-
vation. A depthwise convolution Wy € REXKXKxCmia captures spatial features
while maintaining channel independence. Finally, another pointwise convolution
W, € RIX1DX1IXCmiaxCout yeduces the channel dimension, followed by batch nor-
malization. The IR connection adds the Stem3D output directly to the stage
final result, refining features while preserving spatial consistency.

At the end of each MFE stream, the radiomic features R,,, € RB*¢r which
are directly extracted from the tumor regions in the original images, are projected
into an embedding space and then transmitted to match the spatial dimensions
of Y,,. Specifically, a sequence-specific transformation layer, MLP,,, maps R,,
to RB>XCmid The resulting features are then expanded along spatial dimensions
to RBXCmiaxDXHXW 4 ensure compatibility with Y,,. Finally, the expanded
radiomic features are combined with Y,, via element-wise addition, producing
the stage final feature map Z,,.

After feature extraction, spatial resolution is progressively reduced, allowing
the network to capture high-level representations. The extracted individual fea-
ture maps from all four sequences are then fused into a integrated representation
and processed by the Global-Aware Feature Graph (GAFG) module.

2.2 Global-Aware Feature Graph (GAFG)

The GAFG module, focuses on capturing long-range dependencies by model-
ing global spatial relationships in the fused multi-modal feature representation,
as shown in Figure 2 (c). First, a fusion layer concatenates the four individual
feature maps from the MFE module along the channel dimension and applies
a 1 x 1 x 1 convolution. Next, a depthwise 5 x 5 x 5 conditional position en-
coding (CPE) integrates positional information by convolving and then adding
the original features back. To preserve the initial fused representation, a residual
connection is introduced, where the input to CPE is added back to the final
output.

The position-aware feature is then passed to the dynamic axial graph con-
volution network (DA-GCN). To estimate the overall mean and standard devi-
ation of the position-aware feature, it is first divided into eight quadrants. The
L, distances between corresponding voxels in diagonally opposite quadrants are
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Fig. 2: Detailed structure of MFE and GAFG. (a) illustrates Stem3D, which performs
preliminary feature extraction on MRI images. (b) presents the structure of the final
FFN layer in GAFG. (c) shows the feature extractor structure for the four MRI se-
quences, incorporating radiomic features at the final step. (d) depicts the architecture
of GAFG. (e) demonstrates the workflow of DA-GCN using an example where the
image is rolled by half of its depth, height, and width.

computed, forming a distance distribution. The mean and standard deviation of
this distribution are then used as an approximation for the global statistics of
the position-aware feature. Following this, a rolling operation is performed along
the depth, height, and width dimensions based on the predefined K value. As
illustrated in Figure 2(e), when K is set to half of the depth, height, and width,
the rolling process of DA-GCN is demonstrated. The L; distances between voxel
pairs before and after rolling are computed. If the distance falls within the range
of mean + standard deviation, the two voxels are considered to share infor-
mation, and an edge is constructed between them. As shown in Figure 3, the
application of DA-GCN enables a more precise extraction of the necrotic tu-
mor region compared to CNN-based methods, demonstrating its effectiveness in
capturing tumor-specific features.

Finally, as shown in Figure 2 (b), a feed-forward network (FFN) refines Y via
a channel-expansion and reduction process, combined with residual connections
and layer scaling. This process produces the output Z, which represents the
output of Stage 1. The MFE-GAFG consists of four stages, as shown in Figure 1
each generating a Z with progressively smaller spatial dimensions and increasing
feature dimensions. These four Z representations are then stacked along the
channel dimension and passed through an MGMT classification head followed
by a softmax layer, producing the final probability values for MGMT methylated
and unmethylated status.
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3 Experiment and Result

3.1 Dataset and Implementation details

This study uses the UCSF-PDGM dataset [17], which includes 501 glioma pa-
tients with standardized 3T multi-sequence MRI scans (T1, Tlc, T2, FLAIR,
DWI, SWI), tumor segmentation labels, and genetic data (IDH, MGMT). We fo-
cused on WHO grade IV cases [18], selecting 367 patients with enhancing tumor,
necrotic tumor, and edema regions based on segmentation and MGMT status
(positive /negative). Based on experimental results, we identified T1lc, FLAIR,
SWI, and DWI as the most informative MRI sequence for MGMT status classi-
fication. The dataset was split 0.85:0.15 for training and testing, with four-fold
cross-validation. Tumor regions were extracted and cropped to 128x128x128.
PyRadiomics [19] was then used to extract radiomic features, and ANOVA se-
lected the four most relevant features per region for MGMT prediction.

Our MGG-Net was trained on an NVIDIA RTX A6000 GPU. We employed
weighted focal loss [20] for the MGMT classification. Four-fold cross-validation
was conducted, with each fold trained for 80 epochs. The learning rate used
cosine annealing, decaying from 0.0002 to 0.0001. The batch size was set to 4.

3.2 Comparison with Existing Methods

We evaluate model performance using accuracy (Acc), precision (Prec), recall
(Rec), Fl-score (F1), and AUC [21], reported as mean =+ standard deviation
(SD). For comparison, we selected ResNet+SVM [11] and vViT [13], represent-
ing CNN and Transformer architectures, respectively, to evaluate MGG-Net’s
advantages in local feature extraction and global modeling. As shown in Ta-
ble 1, MGG-Net (T1lc, DWI, SWI, FLAIR) achieved the highest performance
in Acc, Prec, F1, and AUC, while maintaining competitive Rec. Interestingly,
traditional methods showed decreased performance when using DWI and SWI
instead of T1 and T2, while MGG-Net achieved better results with DWI and
SWI, highlighting its superior ability to handle low-contrast inputs.

Table 1: Performance of Different Methods Incorporating Radiomic Features
(Mean + SD)

Method | Ace (%) |[Prec (%)| Rec (%) | F1 (%) |AUC (%)

ResNet+SVM (T1, Tlc, T2, FLAIR)[11] || 66.07+4.2 | 73.67+0.0 [81.88+10.0| 77.20+4.6 | 53.56+3.8
ResNet+SVM (T1c, DWI, SWI, FLAIR)[11]|| 61.61+0.9 | 70.41+1.1 | 80.00+4.7 | 74.80+1.4 | 45.35+3.0
VViT (Tle, T2)[13] 52.6840.9 | 70.714.9 | 59.38111.0 | 63.6345.7 | 49.22.466

MGG-Net (T1, Tlc, T2, FLAIR) 66.9742.0 | 75.2042.7 | 80.63+3.7 |77.70+12.0| 63.2843.3
MGG-Net (T1lc, DWI, SWI, FLAIR) 72.3315.1|81.50429| 79.3848.4 |80.18145|69.02152

Previous studies commonly used T1, Tlc, T2, FLAIR, and radiomics for
glioma analysis. We hypothesized that replacing T1 and T2 with DWI and SWI
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could better capture tumor cellularity, necrosis, and vascular features [22], en-
hancing classification. To validate this, we compared both sequence sets across
methods. Results confirmed our hypothesis: MGG-Net performed more robustly
than the baselines, especially when using DWI and SWI. The contrast between
ResNet+SVM'’s performance drop and MGG-Net’s improvement suggests that
the MFE module extracts more informative features from low-contrast images,
and the GAFG module effectively fuses global multi-sequence information. While
the improvement of MGG-Net across sequence sets was modest, its relative gain
over traditional methods was substantial.

3.3 Ablation Study on MGG-Net

To gain deeper insights into the impact of different MRI sequence combinations
on MGMT status classification, we conducted an ablation study, as shown in
Table 2. Previous study [11] has shown that using a single T1 sequence can
achieve higher classification accuracy compared to certain multi-modal com-
binations. However, our ablation results demonstrate that integrating multiple
sequences, particularly Tlc, FLAIR, SWI, and DWI, enhances classification per-
formance. The best performance was achieved using these four MRI sequences
along with radiomics features, yielding 72.3+5.1% accuracy, 81.5+2.9% preci-
sion, 80.2+4.5% F1l-score, and the highest AUC of 69.0+2.2%. Notably, the
inclusion of SWI and DWTI significantly improved the results, as SWI provides
insights into tumor angiogenesis and necrosis, while DWI reflects tumor cellu-
larity and microstructural changes, both of which are critical for glioblastoma
characterization. These findings suggest that while a single T'1 sequence may per-
form well in certain cases, leveraging complementary information from multiple
modalities leads to a more robust MGMT classification model.

Table 2: Performance of Different MRI Sequence Combinations (Mean + SD)
T1c FLAIR SWI DWI T1 T2 Radiomics|| Acc (%) [Prec (%)|Rec (%)| F1 (%) |AUC (%)

v v v v v 66.97+2.0 | 75.20+2.7 | 80.63+3.7 |77.70+12.0| 63.3+3.3
v v v v 68.75+3.2 | 74.58+2.4 |85.6315.4|79.59125 | 63.0114.2
v v 60.274+2.9 | 72.0141.2 | 72.50+4.3 | 722427 | 444947,
v v v v v 72.3345.1|81.5042.9|79.38+5.4 |80.18+4.5] 69.0215

Additionally, we compared our MGG-Net with MGC-Net, which replaces the
graph module with a CNN [23] (Table 3). MGG-Net achieved higher accuracy
and AUC, demonstrating its superiority in capturing tumor spatial relationships
on multi-modal feature maps. These results confirm the advantage of integrating
graph-based learning for MGMT status classification.

Because some classification models [24, 25] yield correct results without fo-
cusing on key regions, we visualized feature maps to analyze the mechanisms
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Table 3: Replacing Graph Module with CNN (Mean £ SD)
Model || Acc (%)|Prec (%)|Rec (%)| F1 (%) |[AUC (%)

MGG-Net
MGC-Net

72.33151
70.54 445

81.50129
78.4244.4

79.38+8.4
81.88455

80.18_ 45
79.7143.7

69.0212 2
68.2644.9

behind performance gains. Figure 3 presents feature maps of two test cases. It
is evident that the most discriminative features are concentrated in the necrotic
core of the tumor, which aligns with the superior classification performance
achieved when incorporating DWI and SWI. These sequences capture essential
tumor characteristics, such as cellular density and vascular abnormalities, which
are critical to predicting the status of MGMT. Furthermore, the GAFG-based
representation exhibits a more focused activation compared to the CNN-based
approach, demonstrating that the graph-based method more effectively captures
key tumor features. This further supports the advantage of our multi-sequence
MRI fusion strategy in improving classification accuracy.

DWI image DWI ROI GCN feature map CNN feature map

Fig. 3: Visualization results of classification feature maps using Graph and CNN-based
methods. Rows (a) and (b) correspond to two patients from the test set. The "DWI
image" column presents the tumor structure of each patient, while the "DWI ROI"
column highlights the tumor region. The "GCN feature map" and "CNN feature map"
columns show the extracted feature maps of the tumor region using the Graph and
CNN-based methods, respectively. The red-highlighted areas indicate the key regions
of interest for the models.
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4 Conclusion

In this study, we propose MGG-Net, a novel network for multi-sequence MRI and
radiomic features processing that leverages GCNs to enhance global feature ex-
traction. By integrating multi-scale features, the model effectively utilizes diverse
imaging sequences, particularly DWI and SWI, which provide crucial informa-
tion on tumor cellularity and necrosis, improving MGMT status classification.
Although the limited radiomic features used may restrict significant performance
improvements, future work will explore enhanced fusion methods. Feature visual-
ization confirms that MGG-Net prioritizes key tumor subregions, strengthening
its effectiveness in glioblastoma analysis and highlighting the potential of graph-
based learning for medical image classification.
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