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Abstract. In conjunction with graph neural networks (GNNs), func-
tional connectivity analysis based on fMRI data can provide insights into
the interaction and communication patterns in brain network, which has
gained increasing attention in the diagnosis of neuropsychiatric disorders.
However, traditional GNN based models focus primarily on brain regions,
with limited attention given to changes in brain connectivity induced by
diseases, and often lack specific methods to address noise and outliers.
To accurately preserve and analyze connections in brain networks and re-
tain the structure information in the original graph over message passing,
we propose an Residual-Posterior Line Graph Network (RP-LGN). RP-
LGN innovatively re-models each edge as a node to highlight functional
connectivity information. Subsequently, it integrates residual blocks and
a single-pass, low-variance Bayesian variational inference method to ap-
proximate the true posterior distribution. Bayesian variational poste-
rior facilitates the quantification of uncertainty in model predictions
and enhances model robustness in the presence of noise and anoma-
lous data, ultimately promoting more accurate clinical decision-making.
Compared with other models,the performance of RP-LGN was validated
on the ABIDE dataset, ADHD-200 dataset,with significant accuracy im-
provements, and revealed significant site-specific differences and unique
connection patterns associated with diseases. Our code is available at:
https://github.com/YeDbae/RP-LGN
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1 Introduction

Neuroimaging have revolutionized the ability to explore the intricate functional
connectivity of the human brain [6]. Functional magnetic resonance imaging
(fMRI) stands out as a powerful tool for capturing dynamics by measuring blood
flow changes associated with neural activity across different brain regions [2§].
By utilizing deep learning algorithms and computational models, researchers
can extract intricate patterns of brain activity from fMRI scans to distinguish
between healthy individuals and those affected by various neuropsychiatric con-
ditions [2T//9].
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Recent advancements in graph neural networks (GNNs), which leverage func-
tional connectivity (FC) matrices derived from fMRI data to construct brain
network representations, have successfully simulated inter-regional information
transfer and overcome the shortcomings of previous methods. [15127]. FC net-
works provide a structured framework to analyze and interpret complex interac-
tions among brain regions, offering insights into both normal cognitive processes
and neurological disorders. Existing research on GNNs typically utilizes struc-
tured FC frameworks to analyze, simulate, and interpret the complex interactions
between brain regions, providing insights into the diagnosis of neuropsychiatric
disorders. BrainVGAE, an end-to-end variational graph autoencoder, is to pre-
dict partial edges and reduce noise [18]. Multivariate distance-based connectome
network (MDCN) integrates populations and maps individual pathological vari-
ations [24]. STAGIN employed sliding windows to capture dynamic timestamps
and utilized graph convolution and encoding to extract features in the spatial
dimension [I3]. However, these studies have focused more on functional changes
within brain regions and have not explored variations in brain functional con-
nectivity.Brain connectivity can better reflect BOLD signal changes, offering a
new perspective for research on neuropsychiatric disorders. Meanwhile, nearly
all similar GNNs fMRI classification models place greater emphasis on captur-
ing features through graph structures, utilizing only fully connected layers as
classifiers, thereby neglecting the overfitting challenges posed by small sample
data.

To fundamentally advance how connectivity patterns are represented and
analyzed in neuroimaging, we introduce a novel paradigm shift: directly model-
ing functional connections as primary entities rather than secondary attributes.
This edge-to-node transformation via line graphs, inspired by cross-domain link
prediction techniques but uniquely adapted for brain network analysis, explic-
itly elevates connectivity features to first-class objects in GNN processing. Cru-
cially, this approach incurs minimal computational overhead while adaptively
constructing individualized connectomes per subject and enabling direct visu-
alization of clinically significant connections. In this study, we propose a novel
Residual-Posterior Line Graph Network (RP-LGN). We address fMRI-specific
challenges through task-driven architectural innovations: a residual GraphSAGE
backbone preserves structural fidelity against oversmoothing during connectivity-
focused message passing, and a Bayesian variational last layer quantifies predic-
tion uncertainty, enhancing robustness against noise and small-sample bias. The
incorporation of residual posterior patterns improves the discriminative power
and interpretability of functional connectivity matrices, facilitating the identifi-
cation and characterization of neurodevelopmental disorders like Autism Spec-
trum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD).
Our experiments demonstrate robust diagnostic performance on ABIDE I and
ADHD-200 datasets, revealing significant effects of neuropsychiatric disorders
on brain connectivity, thus supporting the clinical relevance of RP-LGN in early
diagnosis and personalized treatment. To our knowledge, this constitutes the
first successful integration of line graph transformations with Bayesian poste-
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Fig. 1: Overall framework of RP-LGN

rior refinement for brain disorder classification, creating a connection between
topological graph theory and clinical neuroscience.

2 Model

RP-LGN transforms the original graph into a line graph via KNN, then obtains
logits using SAGEConv and linear layers, and finally refines the prediction results
by employing a Bayesian variational posterior. The overall workflow of RP-LGN
is illustrated in Fig. [T}

2.1 Initial feature selection

We model the individual brain as a graph structure that simultaneously encom-
passes a set of nodes V' = {vy,vq,...,u,} and a set of edges FE based on the
original fMRI data. To concretize the abstract nodes and edges into a storage
structure, they are mapped to G = (A,X). In this study, adjacency matrix
A € RIVIXIVI and node feature matrix X € RIVIXIFl are defined as the partial
correlation coefficients and Pearson correlation of pairwise BOLD signals be-
tween Regions of Interest (ROIs), where F is the number of features and |V| =n
denotes the number of ROIs. Pearson correlation in undirected graphs blurs and
confuses the distinction between bidirectional activation/inhibition and unidi-
rectional activation/inhibition among ROIs. To solely represent the strength of
correlation itself, we transform all original edge connections into positive values
| eij Gi.5)ev— ‘aij|(i,j)€n' However, constructing graphs in this manner and ap-
plying GNNs still primarily focuses on the updating and refinement of region
features, rather than treating all brain connection as central features. If each
brain connection is modeled as a node in a GNN, the fully connected nature of
the initial brain graph results in (n — 1) x n/2 edges. Even when converted to
an undirected line graph, the scale of the new adjacency matrix dramatically
inflates to (n — 1) x n?/4. Given that brain atlases typically classify the brain
into hundreds of regions, computing matrices with billions of parameters is a
significant challenge for GNNs. To obtain an appropriate number of brain con-
nections, we sparsify the edges in the original graph construction using k-nearest
neighbors (KNN). Considering that retaining only the first-order neighbor edges
in the graph structure would leave approximately the same number of edges as
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the number of nodes, we select K = 1 in KNN:

d(vi, v5) = llzi — 252 (1)
N = argmin; {d(vi,vj) [ J # i}lgng’i,jev (2)
where node feature z; denotes the i-th row of node matrix X, || - ||2 denotes the

Euclidean distance formula, d represents the distance between node ¢ and node
j, N; denotes the K nearest neighbor nodes set of node i. Once the neighbor
set is computed, edges not belonging to the set are set to zero, resulting in a
new sparse adjacency matrix A’ € RIVI*XIVI and edge set E’. To highlight the
functional alterations of brain connections in psychiatric disorders, it is necessary
to map the edges from the original graph G construction into nodes with their
own features in a line graph G:

V = {1, 09y ey Ot} = By eij — 0 (3)

where V denotes the node set of line graph, and all ©; are new node constructed
by original biran connections. The node features in the line graph node set V'
are composed of the weights of the corresponding edges in the original graph
and the features of the two adjacent nodes connected by these edges:

i#; = CONCATE(SUM(;, z;), ai;) ()

where T; represents the features of the i-th node in the line graph, where x;
and z; denote the endpoints of the edge in the original graph to which the line
graph node ¢ corresponds, and a;; indicates the weight of the original edge. Af-

ter constructing the feature matrix X e RIVIXIFH for the nodes in the line
graph, all edges in the original graph that share a common node are treated as
connected node pairs in the line graph, resulting in a binarized new adjacency
matrix A € RIVIXIV], The constructed line graph is represented as G= {A, 5(}
This approach eliminates the need to consider the sequence of node indices,
thereby yielding a stable feature representation. Considering that the line graph
lacks edge features or edge weights, and aiming to preserve both node and graph

features during graph convolution, residual GraphSAGE emerges as a suitable
) & ()

backbone for this purpose. For each SAGEConv layer Z'~ = f (X""), the map-
ping formula is given by.
2 = o(0" - MEAN({z{"}[{z\",Vj € Ni}) (5)

where jl(-l), 21_(1+1)7 92@ denote the input feature matrix, output feature matrix

and learnable parameter of the i-th node in the I-th layer, || represents con-

catenation operator and o denotes the activation function. After aggregating

neighbor nodes, the model employed residual block to get the input X(Hl) of

the next layer:

X(l+1) _ X(l) n Z(l) (6)
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2.2 Classifier

< (L
We flatten the node feature matrix X( ) obtained from the final layer of message
passing and use it as the brain map representation Z for each participant:

Z = CONCATE(z") #1) . #1)y (7)

To get the final predicted label y = {yp,ync} in Cy = 2 classes, the neural
network has implemented an input mapping ¢ : R x @ — R ~ ¢ := ¢(Z,0),
where I denotes the output feature dimension of line graph and 6 € © de-
notes the parameters in neural network. The unnormalized joint data-label log
likelihoods in Bayesian model for classification are:

p(y | Z,W,0) = softmax(Zy),Z; = Wo(Z,0) + ¢ (8)

where Z; € R is logits, ¢ € R® denotes a zero-mean Gaussian noise term
with variance X', which specify a Gaussian prior for W, and W is the weight of
the last linear layer. The weights W of the final layer and the covariance matrix
X € RP*D are treated as random variables, with their variational posterior
defined as ¢(W, X|n), where n represents the variational parameters. It is assumed
that the variational posterior factorizes over the weights W for each class:

Cy

gqW [n) =T aWx In) 9)

k=1

where Wy, denotes the weight of the k-th class. Meanwhile, the weights for each
class possess independent covariance matrices:

Cy

9(2) = [Ny | mr, Z1) (10)

k=1

where . € RP ~ N (1, X) and X denote the mean and covariance of variational
posterior for the k-th class. To achieve precise marginalization while circumvent-
ing the computationally intensive process of evaluating the full marginal likeli-
hood, this study employ stochastic variational inference. This method models
the uncertainty of the model’s parameters and introduces an approximate pos-
terior ¢(£ | ) to approximate the true posterior distribution. We approximate
the posterior distribution as a variational distribution and optimize the model
by maximizing the evidence lower bound (ELBO) [g]:

S~ ogp(YX, A, 0) > Lyp(0,n, %) — STKL((W, Zln) [| p(W, X)) (11)

where S denotes the number of subjects, X and A denote the original input of
this model, Ly (0,7, X) is variational lower bound, KL denotes the Kullback-
Leibler divergence. Employing a fully dense variational posterior allows for the
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Table 1: Model performance comparison table on ABIDE I and ADHD-200
dataset. SAGE: GraphSAGE, BNT: BrainNetworkTransformer, BNC: Brain-
NetCNN, FBG: FBNETGEN

Dataset ABIDE ADHD-200

Model ACC(%) F1(%) AUROC(%) ACC(%) F1(%) AUROC(%)
KAN 63.631+3.57 60.10£4.37 72.754+4.38 62.74+9.21 65.2247.33 63.53+7.90
GAT 58.57+3.36 56.284+3.49 63.26+4.20 51.104+4.31 50.39+4.79 53.9245.51
GIN 51.934+0.86 42.93+6.39 54.854+2.02 54.174+2.32 53.154+3.04 52.6145.10
SAGE 55.004+1.11 51.8242.52 60.67+1.75 60.43+5.90 55.314+9.80 65.0646.06
BNC 66.21+4.35 69.62+6.14 71.244+3.46 59.184+10.40 74.33+11.59 62.48+12.39

LG-GNN 51.14+£0.22 57.12+3.12 62.93£1.35 56.99£0.05 61.91+5.68 51.4445.24
BrainGNN 55.12+£3.26 58.314+2.24 54.79£2.01 62.414+3.43 60.82+£2.57 63.244+2.35
BrainGB 64.12+£2.90 63.314£3.78 71.23+£2.15 59.664+2.09 60.08+3.17 61.944+1.62
FBG 66.55+5.15 66.35+9.58 64.13+11.67 61.22+4.78 81.77+5.26 61.95+6.05
BNT 68.74+1.51 68.08+£3.68 73.914+4.46 53.05+£6.45 72.67+7.92 56.231+6.88
RP-LGN 73.51+2.86 73.161+2.75 78.77+0.59 66.04+5.25 74.73+4.30 71.82+5.77

derivation of a training objective that encompasses these cross-class relation-
ships. To update the model parameters and minimize prediction error, the loss
function is defined as follows:

S Cy
1 1
Lvp(0.1.2)= 2> (y.Wos—1log ) explw] ¢s + = (6] Tpds +07)])  (12)
S s=1 k=1 2
where 0? := ;. The goal of the Bayesian variational last layer is to enhance

the robustness of the model by incorporating uncertainty factors post-training.
The combined training objectives are:

0%, n", " = arg HZlaX{EVB(&?% 2)+5 (log p(2)~KL(a(W | n)|[p(W)))} (13)

where 6* is trained in SAGEConv layers and n*, ¥* are trained through Eq[T3]
The covariance matrix of the variational posterior Y’ are parameterized through
Cholesky factorizations, with the means W and 7 being directly parameterized.
Since the variational lower bound already encompasses the objective loss of the
classification task, the binary cross entropy loss was not added for the binary
classification task in this experiment.

3 Experiments

3.1 Datasets

The study focuses on analyzing brain imaging datasets from ABIDE I [5] and
ADHD-200 [19], which include diseased samples for ASD and ADHD, respec-
tively. The ABIDE dataset aggregates rs-fMRI and structural MRI (sMRI) data
from 17 research centers. From this dataset, we selected 1009 participants with
scanning time points durations exceeding 100, including 493 individuals with
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Table 2: Model performance (%) comparison table on NYU, Peking and KKI
datasets

Dataset NYU Peking KKI

Model ACC F1 AUC ACC F1 AUC ACC F1 AUC
KAN 59.74 56.82 57.80 62.86 52.92 65.68 67.65 44.13 36.38
GAT 51.428 50.07 52.03 59.80 37.42 69.23 73.53 42.36 50.19
GIN 56.99 56.22 55.95 57.73 54.65 56.15 67.43 54.62 50.80
SAGE 56.04 52.43 54.55 56.72 54.05 60.88 69.85 41.09 45.98
BNC 44.76 28.25 60.60 55.78 75.27 54.18 60.00 78.20 45.23

LG-GNN 48.16 54.60 50.95 61.84 60.00 55.43 73.52 62.46 63.75
BrainGNN  52.81 56.12 51.92 53.90 56.25 46.36 66.29 69.83 68.90
BrainGB 53.35 50.24 53.63 54.20 54.43 54.53 70.11 63.97 65.35
FBNETGEN 58.09 37.71 54.75 48.42 8241 53.25 65.00 85.00 42.84
BNT 55.23 41.80 51.65 59.98 86.20 67.52 85.00 85.00 57.35
RP-LGN 58.72 59.57 60.88 65.55 70.71 69.92 83.88 85.51 80.45

ASD and 516 healthy controls (HC). To assess the effects of single-site ver-
sus multi-site data, we compared the largest three sites from the ADHD-200
dataset—NYU, KKI, and Peking—as well as the combined dataset from these
sites. To remove raw noise, we applied a standard preprocessing pipeline to all
images, which included motion correction, slice timing correction, spatial normal-
ization, smoothing, artifact removal, spatial registration, and temporal filtering.
In addition, given the high resolution and cross-individual consistency of the
Craddock 200 brain atlas, we uniformly divided all participants’ brain regions
into 200 regions of interest (ROIs) in our study.

In each dataset, we performed five-fold cross-validation, where ramdomly
allocating 80% of the data for training and 20% for testing in each fold. Given the
sample size, we uniformly trained all models applied to the ABIDE dataset for
100 epochs, while models applied to the ADHD-200 and its sub-sites were trained
for 50 epochs. The final performance is reported as the mean and standard
deviation of the test results across the five folds of cross-validation.

To prevent excessive smoothing of data due to multiple aggregations in the
graph convolutional layers, we configured the RP-LGN with two graph convo-
lution layers. Each convolution layer is followed by a linear layer with the same
dimensionality, a LeakyReLLU, and a BatchNorm layer. The output feature di-
mensions for the two convolution layers are 256 and 64, respectively. In the
experiments, the batch size is uniformly set to 16, the learning rate and weight
decay are set to le-4, and the dropout rate is 0.5.

3.2 Model performance

To comprehensively evaluate the performance of RP-LGN, we compared it with
the single classifier KAN [I6], GNN baselines GAT [22], GIN [23], and Graph-
SAGE [7], the classical brain classification model BrainNetCNN [I12], as well as
novel deep learning models LG-GNN [26], BrainGNN [I4], BrainGB [3], FB-
NETGEN [10], and BrainNetworkTransformer [I1] in Tab and [2l RP-LGN has
achieved commendable results on the large-scale datasets ABIDE I and ADHD-
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200, as well as on individual sites such as NYU, Peking, and KKI, demonstrating
the model’s robust generalization performance across datasets of varying scales.
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Fig. 2: Resudual and posterior ablation study on ABIDE dataset based on SAGE,
GIN and GAT. R: residual, P: posterior, L: line graph.
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Fig. 3: Significant brain connection of ADHD

Fig. 2] illustrates the average accuracy with standard error on the ABIDE
dataset under different module ablations. It can be observed that the combi-
nation of GraphSAGE and residual connections preserves more of the original
graph information without excessively smoothing the graph, thereby maintain-
ing performance. In contrast, the attention mechanism inherent in GAT and
the residual posterior pattern may not integrate well, resulting in a counter-
productive effect. In line graph-based models, Grad-CAM can directly analyze
the importance of each connection in ADHD disease classification through node
gradients. The specific connectivity visualization image is shown in Fig. |3| In
this experiment, the RP-LGN model identified connections between Superior
Parietal Lobule and Inferior Parietal Lobule in the prefrontal cortex, Caudate
Nucleus and Putamen in the basal ganglia, Inferior Temporal Gyrus and Middle
Temporal Gyrus in the temporal lobe, and the Fusiform Gyrus. The prefrontal
cortex is involved in processing spatial attention and sensory information integra-
tion [I7]. ADHD patients often exhibit developmental delays and coordination
issues in this region. In task execution, reward processing, and impulse control,
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ADHD patients commonly show either excessive or insufficient activity in the
basal ganglia [4]. The temporal lobe plays a crucial role in auditory information
processing, and ADHD patients may have difficulties with auditory attention
and information processing tasks [I]. Additionally, alterations in the functional
connectivity of the Fusiform Gyrus in ADHD patients impact visual attention,
facial expression recognition, and social interactions [20].

4 Conclusion

Based on the findings from the ABIDE, ADHD-200 datasets and subsites of
ADHD-200, RP-LGN demonstrated robust performance in analyzing FC in neu-
ropsychiatric disorders. RP-LGN effectively identifies critical brain connections
that exhibit disease-related variations, thereby enhancing the understanding of
altered brain network dynamics, elucidating complex disease mechanisms, and
improving personalized diagnosis and treatment strategies.
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