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Abstract. The electroencephalogram (EEG) acquisition paradigm is fundamental 
to brain-computer interface (BCI) research as it directly determines the mecha-
nisms of brain activity evoked, significantly influencing the quality of collected 
EEG signals. Traditional static cueing paradigms often struggle to effectively in-
duce the motor imagery (MI) state, which can lead to inconsistent task execution 
and degraded EEG signal quality. This study proposes an innovative MI data ac-
quisition paradigm employing dynamic visual cues depicting real human move-
ments to enhance engagement and more effectively induce the MI state. We build 
the first novel dynamic visual cueing MI dataset, comprising EEG data acquired 
using both dynamic and static paradigms from five subjects. We analyze our dy-
namic visual cueing paradigm using questionnaire, qualitative, and quantitative 
analyses, evaluating it from subjective experience, physiological phenomena, and 
EEG signal decoding accuracy perspectives. Experiments show that our dynamic 
cueing paradigm significantly enhances subjects' task understanding and concen-
tration, leading to greater brain activation and, consequently, improved decoding 
accuracy of brain states in MI-BCI tasks. By eliciting more pronounced brain 
state activity, our method fundamentally improves the quality of acquired EEG 
signals, laying the foundation for accurate decoding of brain states, and provides 
an innovative perspective for the development and improvement of MI-BCI. 

Keywords: Electroencephalogram, Motor Imagery Paradigm, Dynamic Visual 
Cues. 

1 Introduction 

The rapid advancement of brain-computer interface (BCI) technology has made elec-
troencephalogram-based motor imagery (EEG-MI) a key research focus [1, 2]. How-
ever, the practical application of MI-BCIs still faces critical challenges, particularly in 
achieving stable and high-quality EEG signal acquisition, which directly affects decod-
ing performance. One of the primary factors influencing MI signal quality is the effec-
tiveness of visual cueing paradigms, as they play a crucial role in guiding users into an 
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optimal MI state [3, 4]. Traditional static cueing methods, though widely used, often 
lack interactivity and engagement, leading to inconsistent task execution and degraded 
EEG signal quality [4–6]. Therefore, addressing these limitations is essential for im-
proving MI-BCI performance and advancing brain state recognition. 

In motor imagery tasks, the design of visual cues has a significant impact on the 
subject's motor imagery process and the modulation of EEG activity [7, 8]. Regarding 
the cue content, traditional cues often rely on symbolic elements not related to body 
parts (such as arrows or cubes) [7, 9, 10]. Although this format facilitates standardiza-
tion, it has limitations in activating motor-related brain regions[11, 12]. Existing re-
search indicates that visual cues based on body parts more directly elicit activity in 
motor-related brain areas compared to geometric objects. For example, observing hand 
movements more strongly induces central β -rhythm desynchronization than observing 
geometric object movements [13]. Furthermore, these types of cues can effectively ac-
tivate the mirror neuron system, enhancing the subject's understanding and engagement 
in motor tasks by mapping visual representations to corresponding motor representa-
tions [14]. Regarding task guidance, the dynamic nature of cues is also a critical factor 
influencing the effectiveness of motor imagery. While static cues present fixed symbols 
or images lacking temporal variation which can lead to reduced engagement, dynamic 
cues simulate real movement processes, helping subjects enter the motor imagery state 
more naturally. 

In this paper, we propose an innovative MI data acquisition paradigm employing 
dynamic visual cues depicting real human movements and present the first dataset ac-
quired using this dynamic cueing paradigm. This paradigm utilizes dynamic image se-
quences of real human movements (such as hand grasping and foot opening/closing) as 
visual cues to naturally enhance subjects' motor imagery states. To evaluate the para-
digm's effectiveness, we employ questionnaire, qualitative, and quantitative analyses, 
examining subjective experience, physiological phenomena, and EEG signal decoding 
accuracy, respectively. Questionnaire analysis captures subjects' feelings and prefer-
ences during data acquisition. Qualitative analysis, including event-related desynchro-
nization/synchronization (ERD/ERS), time-frequency analysis, and brain topograph-
ical mapping, analyzes subjects' physiological phenomena and activation states. Quan-
titative analysis uses five classic, publicly available EEG signal classification models 
in within-session and cross-session experiments to assess the EEG signal decoding per-
formance. Experimental results demonstrate that our proposed dynamic visual cues ef-
fectively improve subjects' attention and task comprehension and stimulate more pro-
nounced brain states, leading to more accurate decoding. 

The key contributions are threefold: (1) the introduction of a novel dynamic visual 
cueing paradigm for MI data acquisition, (2) the demonstration of its superior effec-
tiveness in enhancing attention, task comprehension, and brain state decoding com-
pared to static paradigms, and (3) the public release of paradigm and dataset facilitating 
further research in this area. 



 Dynamic Cues: MI Paradigm & Dataset 3 

2 Method 

The overall framework of the paper is shown in Fig. 1. This section first introduces the 
proposed dynamic visual cueing paradigm, followed by a detailed description of the 
analysis and evaluation methods used to compare it with the static paradigm. 

 
Fig. 1. Overall Framework. The Paradigm Design Part illustrates the dynamic visual cueing par-
adigm proposed in this paper, along with the static paradigm used for comparison. Based on these 
paradigms, the Data Collection Part details the acquisition of EEG data from five subjects and 
the construction of a dataset. The Data Evaluation Part then leverages this dataset to analyze our 
proposed dynamic cueing paradigm versus the static paradigm from various perspectives. 

2.1 Real-Movement-Based Dynamic EEG Paradigm 

To optimize the guidance effect of motor imagery tasks, we design a dynamic visual 
cueing paradigm based on real human movements. Through continuous dynamic visual 
feedback, subjects can more naturally enter and maintain the motor imagery state. The 
cueing procedure of this experimental paradigm is divided into multiple stages, con-
taining three categories: preparation cues, task cues, and motor imagery execution cues. 
These cues are interconnected to form a complete experimental cueing procedure. 

The preparation phase helps subjects adjust their state and focus before the motor 
imagery task. As shown in Fig. 1, an eye icon cues relaxation, while a fixation cross in 
the center indicates the need for increased attention. During the task cue phase, images 
of hands and feet will be displayed on the screen, and the category of motor imagery 
task to be performed in the next trial will be marked in white for 1 second. This cue is 
designed to help subjects quickly understand the current task before the start of each 
trial. Next, a motion GIF corresponding to the task is displayed for 4 seconds, depicting 
standardized limb movements such as hand opening and closing or alternating foot mo-
tions. These dynamic cues provide continuous visual feedback, enhancing task com-
prehension and engagement. 

Based on the cues described above, the experimental paradigm flow structure is 
shown in Fig. 2, which clearly shows the complete organizational structure from Ses-
sion to Run to Trial, as well as the sequence and duration of each cue stage. 

At the beginning of each run, an eye icon appears for 20 seconds to cue subjects to 
enter a resting state. This is followed by a 2-second crosshair display with a cue sound. 
Next, the motor imagery task category (e.g., left hand, right hand) is shown for 1 second 
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to clarify the task. A corresponding dynamic GIF (e.g., left hand opening and closing) 
is then presented for 4 seconds. The system repeats this process 48 times per run, with 
a 120-second rest between runs to ensure subjects adjust their state. 

 
Fig 2. Experimental paradigm flow structure. 

A comparative experiment is designed using a static arrow cueing paradigm based 
on the traditional static paradigm (shown in Fig. 1). In this version, white arrows point-
ing in four directions (left, right, up, and down) are displayed at the center of the screen 
as visual cues. Each arrow corresponds to a motor imagery task involving the left hand, 
right hand, both hands, or both feet, respectively. The cueing procedure for the static 
paradigm is consistent with that of the dynamic paradigm, with the only difference be-
ing the type of visual cue used. All other experimental procedures and parameters are 
kept the same. 

2.2 Evaluation Methods 

Questionnaire Design. In this study, the questionnaire as shown in Table 1, is designed 
to collect subjective feedback and preferences from subjects regarding the two experi-
mental paradigms. It aims to gather information on the perceived differences between 
the paradigms, task difficulty, and levels of concentration during the experiment, 
providing content for subsequent data analysis. 

Qualitative Analysis. To compare the effectiveness of dynamic and static paradigms 
in motor imagery (MI) tasks, this study examines three key aspects of brain activity: 
ERD/ERS phenomena, which reflects cortical excitability and motor-related neural en-
gagement; time-frequency characteristics, which reveal dynamic changes in neural os-
cillations across frequency bands; and brain region activation, which identifies key mo-
tor-related cortical areas. These analyses provide a comprehensive assessment of how 
different cueing paradigms influence MI-related brain activity. 

Quantitative Analysis. To quantitatively evaluate the effectiveness of the dynamic and 
static paradigms, this study tests data collected from both paradigms using five classic 
motor imagery EEG classification models: FBCSPNet [15], Conformer [16], EEGIn-
ception [17], EEGNet [18], and ATCNet [19]. These models represent widely used net-
work architectures and algorithms in EEG signal processing and classification. Each 
model was systematically trained and evaluated to validate the reliability of the 
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collected dataset and objectively assess whether the dynamic cueing paradigm im-
proves motor imagery EEG signal quality and classification performance. 

3 Experiments and Results 

3.1 Dataset Introduction 

A total of five subjects participate in the experiment, each completing multiple runs of 
four-class (left hand, right hand, both hands, both feet) motor imagery tasks under both 
dynamic and static cueing paradigms. Data are collected across two sessions, with each 
session containing six runs and each run consisting of 48 trials. The two sessions are 
separated by one week; one session involves data acquisition in the morning, and the 
other in the evening. EEG data are recorded using the Biosemi ActiveTwo system with 
64 channels arranged according to the international 10-10 system and a sampling rate 
of 2048 Hz. The experimental design is approved by the ethics committee (Approval 
No. 202402041) and complied with the requirements of the Declaration of Helsinki. 
The dataset is available at https://github.com/huawen-hu/MI-EEG-DynamicCues 

3.2 Questionnaire Analysis 

As shown in Table 1, the questionnaire results indicate that the dynamic visual cueing 
paradigm significantly outperforms the static paradigm in task comprehension, concen-
tration, and task difficulty. In terms of task comprehension, subjects find the dynamic 
paradigm easier to understand (average score 2.8 vs. 1.6, with lower scores indicating 
better understanding). Regarding concentration, subjects report better focus during the 
dynamic paradigm experiment (average score 4.0 vs. 2.8, with higher scores indicating 
better concentration). Additionally, the dynamic paradigm facilitates motor imagery 
more effectively (average score 3.2 vs. 1.8, with lower scores indicating easier guid-
ance). Overall, all subjects preferred the dynamic visual cueing paradigm, citing im-
proved task comprehension, enhanced attention, and reduced perceived task difficulty.  

Table 1.  Comparison of dynamic and static paradigms questionnaire results. 

Evaluation metrics Sbj1 Sbj2 Sbj3 Sbj4 Sbj5 Mean 
Ease of understanding of dynamic paradigm 
tasks 2 1 2 1 2 1.6 

Ease of understanding of static paradigm 
tasks 4 3 2 2 3 2.8 

Concentration level in the dynamic para-
digm experiment 4 3 4 5 4 4.0 

Concentration level in the static paradigm 
experiment 3 2 2 4 3 2.8 

Difficulty of motor imagery tasks in the dy-
namic paradigm 2 2 2 1 2 1.8 

Difficulty of motor imagery tasks in the 
static paradigm 3 4 3 2 4 3.2 

Dynamic paradigm (D) vs. static paradigm 
(S) D D D D D D 
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3.3 Qualitative Analysis 

The Event-related Desynchronization/Synchronization (ERD/ERS) Phenomenon. 
Motor imagery typically elicits event-related desynchronization/synchronization 
(ERD/ERS) in the 8-30Hz range (the µ  and β  bands). We analyze ERD/ERS in this 
frequency band for all subjects, visualizing energy fluctuations over time in Fig. 3(a). 
Our method involves band-pass filtering EEG data from channels C3 and C4, squaring 
and averaging the results across trials, smoothing the resulting curve, and then calcu-
lating ERD/ERS percentages using the formula: ERD/ERS (%) = (X - M) / M * 100. 
Here, X represents the energy value at each time point, and M is the average energy 
during the preparation period (-1 to 0 seconds). Notably, our dynamic paradigm elicits 
a more pronounced contralateral activation pattern, exemplified by greater C4 activity 
compared to C3 during left-hand motor imagery, and vice versa during right-hand mo-
tor imagery. This enhances contralateral activation suggests improved neural engage-
ment with the imagined movement. 

 
Fig. 3. Qualitative analysis results of C3 and C4 channels (Here, we present the results of Subject 
2 as a representative example. Due to space constraints, results from other subjects are not shown, 
but they exhibit similar trends, where the dynamic paradigm demonstrates a more pronounced 
activation effect compared to the static paradigm). 

Time-frequency Analysis. Time-frequency analysis was performed on EEG signals 
using wavelet transform with the complex Morlet wavelet (cmor3-3) as the basis func-
tion, leveraging its strong time-frequency localization. This decomposition into 1024 
frequency bands enables fine-grained analysis of time-varying EEG components. Fig-
ure 3(b) shows the power variations in C3 and C4 electrodes (0-30Hz, 4-second win-
dow) during both motor imagery paradigms. The results indicate that our proposed par-
adigm elicits a more concentrated and pronounced contralateral activation pattern com-
pared to the static paradigm. 
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Brain Region Activation Map Analysis. Fig. 3(c) displays the brain region activation 
maps for the two motor imagery task paradigms. Specifically, the 12 trials for each task 
are first band-pass filtered within the 8-30Hz range and averaged. Then, the topoplot 
function is used to generate 64-channel scalp topographies, resulting in a visualization 
containing four subplots. These visually represent the activation distribution across var-
ious brain regions during different motor imagery tasks and are accompanied by corre-
sponding color bars indicating power/frequency values. Each topography represents the 
EEG signal power variations at different electrode locations. Examination of Fig. 3(c) 
reveals that our dynamic cueing paradigm induces stronger and more spatially focused 
activation in the sensorimotor cortex compared to the static paradigm. 

3.4 Quantitative Analysis 

To comprehensively evaluate the performance of the dataset, we selecte five classic 
EEG classification models: FBCSPNet, Conformer, EEGInception, EEGNet, and 
ATCNet. Two experimental schemes are designed in this study: within-session and 
cross-session. The within-session experiment involves dividing the data from the same 
session into training and testing sets. The cross-session experiment uses data from one 
session as the training set and data from the other session as the testing set. 

Within-Session Experiment Results. The within-session experiment involves a ra-
tional partitioning of all data for each subject. The dataset is divided into training, val-
idation, and testing sets at a ratio of 64%, 16%, and 20%, respectively.  

Table 2 shows a comparison of classification accuracy between the dynamic and 
static cueing paradigms across five different models for subjects 1 to 5. Except for Sub-
ject 4, the dynamic paradigm data for all other subjects achieved an equal or higher 
average classification accuracy than the static paradigm, with most showing an im-
provement of over 10%. Subject 1 has the highest average classification accuracy at 
85.52%, exceeding the static paradigm by 14.83%. Notably, ATCNet performs the best 
among the models. This indicates that the dynamic paradigm effectively enhances 
within-session data quality and improves the accuracy of brain state decoding. 

Table 2. Within-session experiment classification accuracy (%). 

Paradigm Method Sbj1 Sbj2 Sbj3 Sbj4 Sbj5 

Static 

FBCSPNet[15] 66.38 68.97 26.72 76.72 32.74 
Conformer[16] 68.1 75 36.21 82.76 41.59 

EEGInception[17] 68.1 69.83 25 83.62 42.48 
EEGNet[18] 72.41 70.69 35.34 82.76 38.94 
ATCNet[19] 78.45 76.72 39.66 87.07 39.82 

Mean 70.69 72.24 32.59 82.59 39.11 

Dynamic 

FBCSPNet[15] 87.07 59.48 31.03 62.93 43.1 
Conformer[16] 84.48 70.69 37.07 81.9 63.79 

EEGInception[17] 81.03 73.28 49.14 82.76 67.24 
EEGNet[18] 86.21 74.14 35.37 87.93 65.52 
ATCNet[19] 88.79 83.62 62.07 92.24 74.14 

Mean 85.52 72.24 42.94 81.55 62.76 
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Cross-Session Experiment Results. Compared to the within-session experiment, the 
cross-session experiment aims to evaluate the generalization performance of the models 
when processing data from different sessions, which more realistically reflects the prac-
tical value of the dataset. Cross-session data typically contains complex variations in-
troduced by time intervals, changes in the subject's physiological state, and environ-
mental factors, which place higher demands on the robustness of the models. 

Table 3 presents the cross-session results for the dynamic and static paradigms. Ex-
cept for Subject 2, whose dynamic paradigm accuracy is slightly lower than the static 
paradigm by only 0.15%, all other subjects shows significantly higher accuracy with 
the dynamic paradigm, with an average improvement of 7.96%. This suggests that the 
dynamic paradigm offers better cross-session consistency compared to the static para-
digm, confirming its ability to elicit more stable neural responses. 

Table 3. Cross-session experiment classification accuracy (%). 

Paradigm Method Sbj1 Sbj2 Sbj3 Sbj4 Sbj5 

Static 

FBCSPNet[15] 52.43 51.04 28.82 58.68 29.35 
Conformer[16] 69.1 56.32 31.94 73.96 39.13 

EEGInception[17] 64.93 50.35 29.51 71.53 35.51 
EEGNet[18] 66.67 55.21 27.78 71.53 35.14 
ATCNet[19] 70.83 66.32 31.25 76.39 34.06 

Mean 64.79 55.85 29.86 70.42 34.64 

Dynamic 

FBCSPNet[15] 76.04 55.21 29.17 59.03 39.58 
Conformer[16] 71.18 53.47 31.94 70.14 44.79 

EEGInception[17] 64.93 44.1 45.49 62.85 47.22 
EEGNet[18] 67.71 56.25 31.60 77.08 50.00 
ATCNet[19] 82.64 69.44 41.67 87.5 62.15 

Mean 72.50 55.70 35.97 71.32 48.75 

4 Conclusion 

In this paper, we propose a novel motor imagery paradigm incorporating dynamic vis-
ual cues based on real human motion to address the limitations of traditional static cue-
ing paradigms in EEG signal acquisition. By utilizing motion GIFs as visual cues, the 
dynamic paradigm aimed to naturally and effectively enhance subjects' motor imagery 
states and activate motor-related brain regions. Furthermore, we introduce a dynamic 
visual cueing motor imagery dataset. 

By employing a comprehensive approach encompassing questionnaire, qualitative, 
and quantitative analyses, we have demonstrated the paradigm's superiority over static 
cueing methods. Specifically, our findings revealed significant advantages in task com-
prehension, attention maintenance, and perceived task difficulty, alongside more pro-
nounced physiological phenomena such as contralateral attenuation effects. Critically, 
quantitative analysis showed substantial classification accuracy improvements of up to 
10% across five public models. These findings indicate that the dynamic visual cueing 
paradigm offers superior efficiency and reliability in motor imagery tasks, making it a 
promising approach for future brain-computer interface applications. 
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