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Abstract. The U-Net architecture remains pivotal in medical image
segmentation, yet its skip connections often propagate redundant noise
and compromise edge information. We propose a Parameter-Free Edge
and Structure Attention (PFESA) based on Fast Fourier Transform
(FFT) to address these limitations. PFESA employs frequency-domain
feature decoupling to separate high-frequency (edge details) and low-
frequency (structural components) representations. Leveraging feature
Signal-to-Noise Ratio(SNR) analysis, we devise dual attention paths:
a High-frequency Edge Attention (EA) enhances gradient-sensitive re-
gions to preserve anatomical contours, while a Low-frequency Struc-
ture Attention (SA) suppresses noise through energy redistribution. This
frequency-aware attention mechanism enables adaptive feature refine-
ment in skip connections without introducing trainable parameters. The
parameter-free design ensures robustness against overfitting in medical
datasets with scarce data. Extensive experiments on multi modal 2D/3D
medical image datasets demonstrate PFESA’s superiority over existing
attention methods, achieving SOTA performance with statistically sig-
nificant improvements in Dice Similarity Coefficient (DSC: +3.3% vs.
baseline) and Hausdorff Distance metrics. Code is available at: https:
//github.com/59-lmq/PFESA.

Keywords: Medical Image Segmentation · Parameter-Free Attention ·
FFT-based Feature Decoupling.

1 Introduction

As a cornerstone of computer-aided diagnosis, medical image segmentation ac-
curacy directly determines the reliability of lesion localization and surgical plan-
ning. U-Net [1] and its variants, which employ skip connections to integrate
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multi-scale features, have become benchmark architectures in this domain. How-
ever, these direct feature concatenation mechanisms present three inherent lim-
itations [2]: 1) Low signal-to-noise ratio (SNR) background noise in shallow en-
coder features interferes with semantic reconstruction in decoders; 2) Progressive
downsampling induces attenuation of high-frequency edge information; 3) Ex-
isting fusion mechanisms lack interpretability for establishing correspondence
between feature weights and anatomical structures.

To address these challenges, attention mechanisms enhance critical regions
through dynamic feature weighting. SENet [3] models global dependencies via
channel compression but introduces overfitting risks in small-sample scenarios
through fully-connected layers. CBAM [4] combines spatial-channel attention
at the cost of quadratic computational complexity growth with channel num-
bers. ECA-Net [5] reduces parameters through 1D convolution but remains
data-dependent. Attention U-Net [2] selectively enhances salient features via
dual attention in skip connections. While improving performance, such param-
eterized modules risk overfitting in medical images’ data-scarce context [6] and
obscure clinical credibility due to their black-box nature - clinicians cannot ver-
ify spatial correlations between attention weights and anatomical landmarks [7].
Recent parameter-free attention methods (e.g., SimAM [8]’s energy function-
based attention) enhance generalizability but neglect the frequency character-
istics of medical images, which high-frequency components encode anatomical
edges while low-frequency components represent organ morphology. Conven-
tional convolutions struggle to decouple frequency information due to limited
receptive fields, whereas spectral processing enables physically interpretable fea-
ture enhancement through global analysis. Liu et al. [6] enhances ViT high fre-
quencies via Laplacian operators but lost low-frequency structures. SF-Net [7]
uses rectangular masks extracting frequencies after FFT, causing discontinu-
ous/noisy high frequencies. WaveSNet [9] replaces downsampling with wavelets
but ignores high-frequency in skip connections, introducing extra noise. PFD-
Net [10] applies 1x1 convolutions in frequency domain without frequency ban
analysis. MC-FDN [22] neglects frequency continuity via channel attention on
real/imaginary components after FFT. SASAN [23] fuses denoised low frequen-
cies but discarded high-frequency feature.

To overcome these limitations, we propose a novel Parameter-Free Edge-
Structure Attention (PFESA) mechanism based on Fast Fourier Transform
(FFT). Our contributions include three key aspects: 1) We implements Gaus-
sian filtering to separate high-frequency (edge details) and low-frequency (struc-
tural components) features, avoiding optimization bias from trainable filters, and
decoupling frequency-domain feature; 2) We propose a SNR-Driven Parameter-
Free Attention which enhances edge SNR through local energy maximization in
high-frequency components and reinforces structural morphology via contrast-
enhanced normalization in low-frequency components. The statistical computa-
tion process eliminates trainable parameters, ensuring mathematically traceable
weight generation. Grad-CAM visualization further enhances interpretability;
3) When integrated into skip connections of both CNN-based and Transformer-
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based models, our method demonstrates state-of-the-art performance across mul-
tiple 2D/3D multi-modal medical image datasets, confirming its robustness.

Fig. 1. An overview of the PFESA(a), which comprises Frequency-Domain Feature
Decouping, Edge Attention(b) and Structure Attention(c).

2 Methodology

Fig. 1 illustrates the overall framework of the proposed PFESA and shows an
example usage of it. Since it is a parameter-free plug-to-play attention module
with the same channels input and output channels, PFESA can be plugged into
any skip connection. In this section, We first introduce the Frequency-Domain
Feature Decouping (Sect. 2.1) and then concentrate on the details of Parameter-
Free SNR-Driven Attention (Sect. 2.2).

2.1 Frequency-Domain Feature Decouping

Medical image frequency components exhibit distinct separability in the spectral
domain, which high-frequency elements consist edges and textures while low-
frequency components contain organ morphology. Using 2D data as an example
(with 3D cases following the same principle), we first transform input feature
maps X ∈ RC×H×W into the frequency domain F(X) ∈ RC×H×W via Fast
Fourier Transform (FFT). Gaussian filtering Gσ(u, v) = exp

(
−u2+v2

2σ2

)
is then

applied for frequency-band decoupling: Hl = Gσ⊙F(x), Hh = 1−Hl, where the
parameter σ = r · min(H,W )

max(H,W ) , r = 0.1 controls the cutoff frequency (see Sect. 3.3
for ablation studies). The high-frequency features Xh and low-frequency features
Xl are subsequently reconstructed through inverse FFT.

2.2 Parameter-Free SNR-Driven Attention

The signal-to-noise ratio (SNR) of medical image features can be mathematically

defined as the ratio of signal energy to noise energy [11]: SNR =
E[S2]
E[N2] =

µ2
S

σ2
N

,
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where σ2
N denotes noise variance and µ2

s approximates the signal energy intensity.
This fundamental distinction necessitates differentiated computational frame-
works for modeling SNR in high-frequency edge features versus low-frequency
structural features.

Edge Attention(EA) High-frequency features Sh exhibit intense gradi-
ent variations where local energy (quantified as variance) significantly surpasses
noise energy in anatomical edge regions of medical images. Assuming additive
Gaussian noise distribution Nh ∼ N(0, σ2

n,h), let σ2
s,h and σ2

n,h denote signal and
noise variances respectively. In edge regions, σ2

s,h ≫ σ2
n,h will be present. The

edge SNR is formulated as:

SNRedge =
E[S2

h]

σ2
n,h

≈ E[(Xh − µh)
2]

σ2
n,h

(1)

By substituting σ2
n,h with σ2

h (feature variance), we derive the Edge Attention
(EA) map normalized to [0, 1].

EA =
(Xh − µh)

2

σ2
h

, (2)

where σ2
h is feature variance. For high-frequency feature Sh, when (Xh −µh)

2 ≈
σ2
s,h, σ

2
h ≈ σ2

s,h in edge regions, EA ≈ 1; In noise-dominated regions, when

(Xh − µh)
2 ≈ σ2

n,h, σ
2
h ≈ σ2

s,h + σ2
n,h, EA ≈ σ2

n,h

σ2
n,h+σ2

s,h
→ 0.

Structure Attention(SA) Low-frequency artifacts noise Nl in medical
image typically exhibit energy distributions comparable to anatomical signals
Sl [24]. To amplify their discriminability, we strategically enhance dominant re-
gions through the squared mean-to-variance difference:

SNRstructure =
E[S2

l ]

σ2
n,l

≈ E[(X2
l − µl)]

σ2
n,l

(3)

Substituting σ2
n,l with σ2

l and applying Sigmoid normalization yields the Struc-
ture Attention (SA):

SA = Sigmoid

(
X2

l − µl

σ2
l

)
(4)

where σ2
l is feature variance. By applying Sigmoid for SNRstructure, SA is con-

strained to the range of [0.5, 1]. For low-frequency feature Sl, when X2
l − µl ≫

0, σ2
l ≈ σ2

s,l, SNRstructure and SA approaches 1; In noise-dominated regions,
when X2

l − µl ≈ 0, SNRstructure approaches 0 and SA approaches 0.5.
The high-frequency Edge Attention (EA) enhances boundary signal-to-noise

ratio through localized energy normalization, while the low-frequency Structure
Attention (SA) amplifies morphological discriminability via global variance con-
trast. These dual mechanisms operate complementarily in the spectral domain
to collectively refine spatial-domain representations. The parameter-free design
ensures mathematically traceable weight generation and anatomical coherence
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with medical image characteristics, guaranteeing physically plausible and inter-
pretable feature enhancement. The final output after PFESA is obtained by
fusing EA and SA through a Sigmoid-activated fusion gate, followed by element-
wise multiplication with input features:

A = Sigmoid(EA+ SA), Xout = A⊙X (5)

3 Experiments

3.1 Datasets and Implementation

Datasets. We conduct extensive experiments on two 2D datasets (GlaS [12] and
ISIC-2017 [13]) and two 3D datasets (LA [14] and Tooth [15]). GlaS is a gland
segmentation dataset, including 165 Hematoxylin and Eosin (H&E) stained im-
ages of benign and malignant tissue. The number of training, valid and test
images are 85, 20 and 60, respectively. ISIC-2017 is curated from the ISIC Chal-
lenge Dataset 2017 provided by the International Skin Imaging Collaboration
(ISIC), comprising 2000 images for training, 150 images for validation and 600
images for test. LA is a left atrial segmentation dataset from 2018 Atrial Seg-
mentation Challenge. It consists of 100 3D LGI-MRI images, with a resolution
of 0.625× 0.625× 0.625 mm. Following [16], we use 80 images for training and
20 images for testing. Tooth dataset is collected from a subset of a large scale
dataset [15], which is used for segmentation and reconstruction of individual
teeth and alveolar bone to aid in dental treatment. Following [17], we use 103
images for training and 26 images for testing.

Implementation Details. We implemented our framework using PyTorch.
Training and inference of all models were performed on one NVIDIA GeForce
RTX 4090. The input resolutions of 2D datasets and 3D datasets were 2562 and
1283, respectively. The loss function was DiceCE Loss. We ran 500 epochs for all
2D datasets and 10000 iterations for all 3D datasets. We used SGD optimizer,
with initial learning rates of 0.1 and 0.01, decays of 1 × 10−5 and 1 × 10−4,
and momentum of 0.9 and 0.99 for 2D and 3D datasets, respectively. Perfor-
mance was evaluated using the dice similarity coefficient(DSC,%), and hausdorff
distance(HD, mm) for all the experiments.

3.2 Comparison with the State-of-the-Art Methods

The baseline frameworks comprise CNN-based models (U-Net [1] and 3D U-
Net [18]) and Transformer-based frameworks (TransUNet [19] for 2D and UN-
etr++ [20] for 3D). We compared our method against with parameterized at-
tention mechanisms (CBAM [4], SE [3], ECA [5]) and parameter-free attention
mechanisms (SimAM [8] and SIAM [21]). All attention modules are integrated
into every skip connection of the baseline architectures. For a fair comparison,
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Table 1. Comparison experimental results obtained from four datasets, highlighting
the best scores with bold.

2D
Methods

GlaS ISIC-2017 3D
Methods

LA Tooth
DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓

U-Net [1] 88.61 11.51 84.09 11.40 3D U-Net [18] 84.55 15.68 84.88 25.27
+CBAM [4] 87.31 16.23 83.43 10.67 +CBAM [4] 86.01 16.26 86.88 9.26

+SE [3] 84.21 17.49 83.05 12.01 +SE [3] 86.29 14.35 87.36 8.66
+ECA [5] 84.34 18.32 83.47 11.62 +ECA [5] 87.09 15.12 85.00 15.62

+SimAM [8] 87.44 12.07 83.87 11.77 +SimAM [8] 86.63 14.23 84.99 31.81
+SIAM [21] 88.05 14.66 83.79 12.43 +SIAM [21] 83.72 20.30 80.08 26.40

+PFESA(ours) 90.18 8.13 84.25 10.12 +PFESA(ours) 87.17 12.91 88.21 8.22
TransUNet [19] 88.83 13.76 84.55 10.16 UNetr++ [20] 89.78 6.75 86.27 2.47

+CBAM [4] 87.92 14.79 83.50 10.91 +CBAM [4] 89.47 7.82 84.20 4.99
+SE [3] 86.26 14.75 83.60 11.20 +SE [3] 89.40 10.13 87.30 2.38

+ECA [5] 88.06 13.25 84.44 10.36 +ECA [5] 89.52 11.98 86.97 2.40
+SimAM [8] 85.88 15.96 84.84 10.36 +SimAM [8] 90.09 6.74 87.22 2.34
+SIAM [21] 86.48 15.65 84.15 10.14 +SIAM [21] 88.65 7.41 81.44 9.45

+PFESA(ours) 89.33 13.21 85.27 9.54 +PFESA(ours) 90.16 6.72 87.77 2.14

we used publicly available codes for all methods. We reported segmentation per-
formance solely on individual model accuracy, without using pre-training, model
ensembling, or extra data.

Quantitative Analysis. Table 1 presents detailed quantitative compar-
isons, with bold indicating the best results. On the GlaS [12] dataset, other
attention methods degrade performance versus baseline, which DSC reduced at
least 0.56%, HD is increased by at least 0.56 mm, indicating that these methods
are overfitting on scarce dataset. However, our method significantly reduces HD
(reduced by 3.4 mm compared to U-Net [1] and 0.55 mm compared to Tran-
sUNet [19]) while improving DSC. In the ISIC-2017 [13] dataset, it is noted that
except for the improvement of SimAM [8] added to TransUNet [19] over Tran-
sUNet [19], the DSC of other methods has decreased (DSC decreased by at least
0.11%). Our method has improved the performance of other methods (DSC in-
creased by 0.16% compared to U-Net [1] and 0.72% compared to TransUNet [19]).
It shows that our method can also be effective in the field of dermoscopic im-
ages and natural-like images. In the LA [14] dataset and Tooth [15] dataset, it
can be found that when using 3D U-Net [18] as the baseline, our method has
significantly decreased in HD compared to other methods (HD of the Tooth [15]
dataset decreased from 25.27 mm of the baseline to 8.22 mm), which highlights
the superiority of our performance. When using UNetr++ [20] as the baseline, it
can be found that the baseline is better than our method in 3D U-Net [18] (DSC
of the LA [14] dataset increased by 2.61%), but after adding our method, the in-
dicator is still improved (DSC from 89.78% to 90.16%). The results show that our
method can achieve SOTA level on both CNN-Based Model and Transformer-
Based Model, also achieving SOTA on datasets of different modalities, which
verifies the robustness of our method.
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Fig. 2. Qualitative examples of four datasets. The first and second columns are the
raw images and labels, and the other columns are the predictions of different methods.

Qualitative Analysis. Figure 2 shows some specific examples from the
comparative experiments. Upon visually inspecting the results of other atten-
tion mechanisms, it is apparent that our method pays more attention to the
boundary regions. Figure 3 presents the Grad-Cam visualizations of different
layers of Skip Connections (SC-1, SC-2, SC-3) in TransUNet [19], applied to the
GlaS [12] and ISIC-2017 [13] datasets using different attention mechanisms. It
can be seen that in the lower layers with high background noise (SC-1), other
methods lose edge information, while our method emphasizes feature edges and
details. In the deeper layers (SC-2 and SC-3), while we focus on the edges, we
also retain attention on the main structural features, whereas other methods only
focus on certain regions of the target features. As shown in Table 1 and Figure 3,
our method achieves lower HD values compared to other approaches and effec-
tively preserves high-frequency edge information at skip connections, enhancing
the feature signal-to-noise ratio, which intuitively supports the reliability and
interpretability of Eq. 2 and Eq. 4.

3.3 Ablation Study

All ablation experiments were conducted on the ISIC-2017 [13] dataset using
U-Net [1]. Table 2 demonstrates the impact of varying cutoff frequencies (r)
on frequency-band separation and segmentation performance. As r increases
from 0.1 to 0.5, the Hausdorff Distance (HD) progressively rises (from 10.12
mm to 11.02 mm), indicating that broader low-frequency bandwidth captured
by the Gaussian filter reduces high-frequency signal energy. This degradation in
the SNR of skip connection directly correlates with performance decline (DSC
decreased by 0.35%). Table 3 shows the impact of different components (FD:
Frequency-Domain Feature Decoupling, SA: Structure Attention, EA: Edge At-
tention) on segmentation performance. When only FD is used, the sum of high-
and low-frequency features replaces the original skip connection features. The
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Fig. 3. Visualization of each skip connection feature using the trained TransUNet with
different attention. The green and red line in Image represent Ground Truth and Predic-
tion respectively. SC-1 means that low-level skip connection. SC-2 and SC-3 represent
the high-level skip connection.

Table 2. Ablation of the
r value.

r DSC↑ HD↓
0.1 84.25 10.12
0.2 83.21 11.53
0.3 84.19 11.49
0.4 84.08 10.78
0.5 83.90 11.02

Table 3. Ablation of the
each component.

FD SA EA DSC↑ HD↓
84.09 11.40

✓ 84.14 11.10
✓ ✓ 84.17 11.02
✓ ✓ 84.21 10.95
✓ ✓ ✓ 84.25 10.12

Table 4. Ablation of the Fea-
ture fusion strategies.

Method DSC↑ HD↓
baseline 84.09 11.40
Replace 83.78 10.94
ADD 84.26 10.59
Mul 84.25 10.12

results in Table 3 show that with only FD, DSC increases by 0.05% and HD de-
creases by 0.3 mm compared to the baseline. When only SA is used, the model
focuses more on structural information at the skip connections, reducing some
redundant features. When only EA is used, HD decreases by 0.45 mm compared
to the baseline, indicating that the model focuses more on edge information
at the skip connections. Our method achieves the best results, with HD re-
duced by 1.28 mm and DSC increased by 0.14%, showing that the model, while
emphasizing edge information at the skip connections, also captures structural
information and suppresses background noise. Table 4 compares feature fusion
strategies. Direct replacement slightly degrades DSC (-0.31%) but improves HD
(-0.46mm), validating edge-specific enhancements. Additive fusion achieves peak
DSC (84.26%) at the cost of compromised HD due to feature distribution distor-
tion. Multiplicative fusion balances accuracy and robustness (DSC: 82.5%, HD:
10.12), preserving original feature statistics while integrating attention guidance.
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4 Conclusion

In this study, we addresses noise interference and edge degradation in skip
connections by proposing a Fast Fourier Transform (FFT)-based parameter-
free edge and structural attention mechanism. Through frequency-domain de-
composition, we disentangle edge and structural features, then construct SNR-
driven attention modules to collaboratively suppress noise while preserving crit-
ical edge information. Experimental results demonstrate state-of-the-art per-
formance across multi modal datasets with varying baselines, confirming the
method’s robustness. Our work establishes a novel frequency feature decoupling
paradigm for medical image segmentation, offering fresh insights into architec-
tural design through interpretable frequency-space operations.
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