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Abstract. Recent advancements in medical vision-language models have
increasingly accentuated the substantial potential of incorporating tex-
tual information for better medical image segmentation. However, ex-
isting language-guided segmentation models were developed under the
assumption that the attributes/clauses of textual prompts are uniformly
complete across all images, neglecting the unavoidable incompleteness of
texts/reports in clinical applications and thus making them less feasible.
To address this, we, for the first time, identify such incomplete textual
prompts in medical image referring segmentation (MIRS) and propose an
attribute robust segmentor (ARSeg) by constructing attribute-specific
features and balancing the attribute learning procedure. Specifically,
based on a U-shaped CNN network and a BERT-based text encoder,
an attribute-specific cross-modal interaction module is introduced to es-
tablish attribute-specific features, thereby eliminating the dependency of
decoding features on complete attributes. To prevent the model from be-
ing dominated by attributes with lower missing rates during training, an
attribute consistency loss and an attribute imbalance loss are designed
for balanced feature learning. Experimental results on two publicly avail-
able datasets demonstrate the superiority of ARSeg against SOTA ap-
proaches, especially under incomplete and imbalanced textual prompts.
Code is available at https://github.com/w7jie/ ARSeg,.

Keywords: Medical referring image segmentation - Incomplete textual
prompts - Imbalanced missing rates.

1 Introduction

Medical image segmentation (MIS), distinguishing lesions or anatomical struc-
tures from background, is a crucial yet challenging task in medical image analy-
sis [1I2]. Existing MIS approaches mainly rely on well-annotated medical imag-
ing data for training CNN [3l[4], transformer [5], mamba [6], or hybrid archi-
tectures [7J8I9]. However, despite their effectiveness, pixel-wisely annotating is
expensive [10], making it difficult to collect large-scale medical imaging data to
ensure model robustness and generalizability [TTI12].
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scope number of regions location shape color diameter boundary enhancement

“Bilateral pulmonary infection, two infected areas, upper left lung and upper right lung.” |

| “Polyp is an oval bump, often in pink color, in rectum.” |

“Avascular tumor in the VI segment of the liver, with a diameter of 7.5mm, irregular shape, clear boundary, and no ring enhancement.” |

Fig. 1: Examples of textual information. Phrases describing the same attribute
are highlighted with the same colors. From top to bottom: textual prompts
adopted by LViT [10], MIU-VL [15], and LSMS [I3] respectively.

Alternatively, utilizing medical notes or reports as compliments is considered
feasible as they are easily accessible and usually contain rich information [10]
and thus is promising to promote the convergence and reduce the training costs
of MIS models. Therefore, several recent studies have dedicated efforts to inves-
tigating language-guided medical image segmentation, firstly defined as medical
image referring segmentation (MIRS) by LSMS [I3]. Following this, LViT [10]
proposes a dual U-shaped architecture to effectively integrate textual and visual
information, while Bi-VLGM [14] utilizes a bi-level class-severity-aware vision
language graph matching strategy to realize local-class alignment at the word
level and global-severity alignment at the sentence level.

Though such pioneering MIRS approaches have demonstrated the feasibility
and infinite potential of combining textual information for MIS, the fundamen-
tal assumption that textual information is consistently and equally available for
each image is unrealistic. On the one hand, collecting complete and uniform
texts for each image is of high complexity. On the other hand, relying on com-
plete textual prompts for training and testing may limit the flexibility of MIRS
approaches in clinical practice. As depicted in Fig. [I] the textual information of
each data source is structured as a fixed set of attributes. In clinical practice,
not all predefined attributes are consistently and well recorded. For instance,
the predefined attribute set of LViT includes the elements of scope, the num-
ber of regions, and locations [I0]. In practical applications, it is very often that
only scope or number information is available, resulting in incomplete textual
prompts compared to the predefined set. Such incomplete textual prompts would
result in severe performance degradation in testing and instability in training,
which is under-explored.

In this paper, we aim to develop a robust model capable of stably segment-
ing indicated targets at various attribute completeness. Specifically, we propose
a novel framework named ARSeg for attribute-robust MIRS. Based on a U-
shaped CNN backbone and a BERT-based text encoder, an attribute-specific
cross-modal interaction (ACI) module is developed to capture attribute-specific
features for decoding. In this way, the coupling relationship among attributes
is released, thereby mitigating the negative impact on feature extraction given
missing attributes. To avoid the model being dominated by certain attributes
during training especially when textual prompts own imbalanced missing rates,
an attribute consistency loss and an attribute balancing loss are jointly utilized.
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Fig. 2: Overview of the proposed ARSeg.

Experimental results on the QaTa-COV19 and MosMedData+ datasets demon-
strate the superiority of ARSeg against existing MIRS approaches on dealing
with incomplete and imbalanced textual prompts.

2 Method

The Overall Architecture. As depicted in Fig. 2] ARSeg adopts a partially
symmetrical encoder-decoder paradigm. For the encoder part, a progressive
downsampling CNN encoder is utilized to extract hierarchical image features,
a BERT-based encoder is applied to process the input text prompts for textual
feature modeling [I6], and an Attribute-specific Cross-modal Interaction(ACT)
module is developed to establish the cross-modal interaction between image fea-
tures and textual features while preserving attribute-specific features. After en-
coding, each separate existing attribute, together with the whole input text
(composed of all existing attributes), will generate individual language-guided
multimodal feature maps. For the decoder part, a progressive upsampling CNN
decoder is adopted to decode the encoded fused feature maps separately. In ad-
dition, an attribute consistency loss and an attribute balancing loss are used to
address the interference caused by missing attributes.

Image Encoder and Decoder. The encoder-decoder architecture in ARSeg
follows U-Net [3]. Specifically, the CNN encoder is composed of K stacked CNN
blocks, and each CNN block consists of a convolution (Conv), a batch normal-
ization (BN), and a ReLu activation layer. To progressively expand the receptive
field, a 2 x 2 max pooling layer is performed after each CNN block. The above
encoding procedure is formulated as:

F* = MaxPool(ReLu(BN(Conv(F*" '),k € 1,2,..., K, (1)

where F* denotes the output of the k-th CNN block. Then, each input image
X is encoded as F¥. For decoding, each max pooling in the encoder is replaced
with a 2 X 2 neighboring-based upsampling layer.

Text encoder. Inspired by LViT [I0], both BERT and 1D convolution are
adapted to process input text prompts. As illustrated in Fig. [I] each text in
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MIRS is composed of multiple clauses, each describing an attribute of the tar-
get. Given an input text L = [Lq, Lo, ..., L,,] consisting of m clauses/attributes,
it is encoded to a series of textual feature embeddings T = [T}, T3, ..., T, ]. Dif-
ferent from existing MIRS works where all images equally have m attributes,
attribute availability of each training image varies in our setting depending on
text completeness indicating incomplete textual prompts. To describe the phe-
nomenon of missing attributes, a mark vector V'€ R™ is introduced to indicate
the existence of each attribute, where V; = 1 means the i-th attribute exists. To
further simulate realistic scenarios where the missing rate of each attribute can
be different, a missing rate vector R € R™ is defined where R; € [0, 1] indicates
the missing probability.

Attribute-specific Cross-modal Interaction (ACI). The inputs of ACI con-
sist of an encoded image feature map F¥, a mark vector V generated from the
input textual prompts, and encoded textual feature vectors T = [T1,T5, ..., Tn].
To avoid the excessive coupling among T and between F¥ and T when es-
tablishing cross-modal interactions, totally m + 1 learnable meta vectors are
introduced corresponding to the common features of m attributes denoted {A4;,
and the input image denoted I. Meanwhile, to enable these meta vectors to learn
input-related representations, totally P cross-attention modules are stacked for
dependency establishment. Such a process is formulated as:

7 = CrossAttentionp(Tip_l, Af_17 Af_l), (2)
Al = CrossAtten‘cionp(Alp_l7 TP, T7), (3)

where p = 1, ..., P represents the p-th cross-attention module, ¢ = 1, ..., m repre-
sents the i-th attribute, given A? = A;, and T? = T;. Similarly, the image meta
vector [ is updated by performing the above interaction procedure starting with
FE_ After updating the meta vectors into input-related vectors, matching and
connection operations are adopted to generate attribute-specific features for de-
coding, formulated as:

F,=IPE' + V;,APET i=1,2,...m, (4)

where E! and EI are projection matrices. In addition, the whole-text-guided
features F; for decoding are constructed by fusing the features of all existing
attributes with the image features, formulated as:

F,=I1"E"+) V,AFET. (5)
i=1

Attribute Consistency and Balancing Loss (ACBL). All attribute-specific
{F;} and the whole-text-guided features F; will be fed into the CNN decoder
separately, consisting of K’ CNN blocks for individual decoding. Each block will
generate the corresponding decoded features denoted as Fik or FF, where k =
1, ..., K represents the k-th decoding block. To achieve accurate prediction of
the target under various attribute missing scenarios, an attribute consistency
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loss L¢ is introduced to minimize the prediction difference between attribute-
specific and the whole-text-guided features, defined as:

K
&= VKL(o(E}),o(F))), (6)
k=1

where KL represents the Kullback-Leibler divergence computation and o repre-
sents the Softmax operation.

In clinical applications, attributes are not uniformly missing, with the missing
rates of easy-to-obtain attributes being lower and those of others being higher.
During training, such imbalanced missing rates will result in different learning
speeds across attributes, making the attribute with a lower missing rate dominate
the learning direction of the model. To address this, an attribute balancing loss
L p is designed to supervise the model. Specifically, the prototypes corresponding
to the i-th attribute and the whole input text are generated first by averaging
FX and FE within the target region, denoted as ¢; and ¢;. Then, the correlation
maps M; or M, are generated by calculating the cosine similarity between the
prototypes ¢; or ¢; and the corresponding decoded features FX or FX. Finally,
Lp is formulated as:

M; — M; Vv
21 Vill My — M|
Lp = Zni‘/;HMt - M;l3, (8)

i=1
where ||||2 represents the L2-norm and 1), reflects the prediction gap between the
i-th attribute and the whole text. 77; > 1 indicates that this attribute has not
been well learned. By introducing 7); as weights to penalize prediction differences,
Lp can effectively solve the issue caused by imbalanced missing rates.

For segmentation, a standard segmentation loss Lscg = Lgice+Lace is adopted,
and the overall loss is written as:

‘Ctotal - Eseg + )\1 Z EZC + )\2£Bu (9>
=1

where A1 and A\ are balancing hyper-parameters.

3 Experiments and Results

Datasets. Two publicly available datasets are selected for evaluation. (1) QaTa-
COV19 [I7]. It consists of 9,258 chest X-ray images manually annotated with
COVID-19 lesions. (2) MosMedData+ [18/19]. It comprises 2,729 CT scan slices
manually annotated with lung infections. The data split and textual annotations
for QaTa-COV19 and MosMedData+ follow LViT [I0]. As illustrated in the first
example of Fig.[l] these textual annotations are structured into three attributes,
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Table 1: Quantitative comparison in terms of Dice (%) and mloU (%) on the
QaTa-COV19 dataset under different attribute missing rates.

LAVT UniLSeg |RefSegformer| TGANet LViT ARSeg
Dice mloU |Dice mloU|Dice mloU | Dice mloU| Dice mloU| Dice mloU
)|80.48 67.01 |72.88 59.58(81.63 69.71 |77.17 64.39|81.52 68.63(84.09 72.64
)|75.81 64.32(68.04 54.55|76.30 65.14 |75.22 62.95|76.15 65.03|83.88 72.63
.5)|78.02 67.95|70.02 58.01|77.85 64.71 [73.34 60.75|79.32 64.79|82.80 72.51
(0 5 0 2 0. 8) 77.95 65.8869.10 57.82(79.40 68.22 |72.02 60.02|76.08 64.13|80.93 68.63
)
)
2)

(R17 R27 R3)

(0.0, 0.0, 0.0
(0.2,0.5, 0.8

(0.5, 0.8, 0.2)|78.34 68.57|70.08 57.03|77.78 66.35 |74.94 62.97|78.97 64.08|80.10 67.03
(0 8, 0.2, 0.5)[78.12 66.95 |68.67 55.06(78.69 67.63 |72.12 59.74|77.27 64.53|81.71 69.52
78.25 67.18|71.73 59.84|77.48 65.69 |76.07 63.84|78.52 64.97|80.03 67.24

Table 2: Quantitative comparison in terms of Dice (%) and mlIoU (%) on the
MosMedData+ dataset under different attribute missing rates.

LAVT UniLSeg |RefSegformer| TGANet LViT ARSeg
Dice mloU|Dice mloU| Dice mloU | Dice mloU|Dice mloU| Dice mloU
)|68.51 55.32(65.89 52.01(70.25 57.31 [69.48 55.81(72.10 57.35|73.24 59.82
)|67.08 52.91(63.44 48.29|66.30 52.24 |68.07 54.66(69.75 55.06|72.36 58.38
.4)(66.18 52.24|62.52 47.68|65.69 51.89 |66.44 53.31|68.15 55.79(70.83 56.75
(0 4 0 1 0. 7) 66.72 52.61(64.12 49.48(68.40 54.35 [68.95 55.29(70.19 55.91|71.74 56.15
)
)
1)

(R17 R2> R3)

(0.0, 0.0, 0.0
(0.1, 0.4, 0.7

(0.4, 0.7, 0.1)|67.05 53.04(60.74 46.04|66.89 53.15 |65.49 52.01|70.78 57.08|72.11 57.46
(0 7,0.1, 0.7)[64.61 50.57|57.33 43.59(65.72 51.74 |67.91 53.94|67.63 53.72|71.87 56.72
67.18 53.11|59.61 45.52|66.05 51.99 [66.96 56.04|66.38 52.62|71.38 56.64

including the scope, the number of regions, and locations. Therefore, in our
experiments, the number of attributes m is set as 3.
Implementation Details. Models were implemented in PyTorch 1.10.0 and
trained on one NVIDIA Geforce RTX 3090 GPU. The Adam optimizer is em-
ployed for training, with an initial learning rate of 2e~* and a weight decay
of 1e~*. For a fair comparison, all comparison models are re-implemented and
trained for 100 epochs on MosMedData+ and 50 epochs on Qata-COV19 under
the same settings. To simulate attribute missing, before training, we randomly
mask clauses according to imbalanced missing rates R and generate the corre-
sponding mark vector V.
Comparison with State-Of-The-Art. Five SOTA language-guided segmen-
tation models are selected for comparison, including LAVT [20], UnilSeg [21],
RefSegformer [22], TGANet [23], and LViT [I0]. To evaluate the performance
of models under various attribute missing conditions, we test the models under
both the complete and six imbalanced attribute missing situations.
Quantitative comparison results on QaTa-COV19 and MosMedData+ are
summarized in Tables[T] and [2] Compared to existing approaches, the proposed
ARSeg achieves the best Dice and mloU performance across all attribute miss-
ing situations. More importantly, the performance advantage of ARSeg is more
pronounced under incomplete textual prompts, achieving the best performance
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Fig.3: Exemplar qualitative results of different approaches on QaTa-COV19
(rows 1-2) and MosMedData+ (rows 3-4) under complete (top) and incomplete
textual prompts (bottom).

Table 3: Ablation study on different component combinations of ARSeg. Exper-
iments were conducted on QaTa-COV19 with R = (0.2,0.5,0.8) and MosMed-
Data+ with R = (0.1,0.4,0.7) measured by Dice (%) and mIoU (%).

Components QaTa-COV19 | MosMedData+
Baseline ACI ACBL | Dice mloU | Dice mloU
80.10 68.48 | 69.54 54.62
81.39 69.13 | 71.66 56.23
82.55 71.10 | 71.29 56.16
83.88 72.63 | 72.36 58.38
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stability. Qualitative comparison results are presented in Fig. [3] where all models
were trained under complete textual prompts and evaluated under both complete
and incomplete textual prompts. Though SOTA approaches accurately identi-
fied the target under complete textual prompts, their performance noticeably
degrades under incomplete textual prompts. Comparatively, ARSeg maintains
outstanding segmentation performance even without complete textual prompts.
Ablation Study on Components. As stated in Table [3] compared to the
baseline which completely removes ACI and ACBL module, introducing either
ACT or ACBL is helpful, demonstrating their effectiveness for balanced attribute
feature learning. After jointly using ACI and ACBL, ARSeg achieves the best
performance across both datasets.

Ablation Study on V. To explore the impact of attributes on model per-
formance, we trained and evaluated the models under completely-missing at-
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Table 4: Ablation study on V validated on MosMedData+-.

Attribute LViT Refsegformer ARSeg
Scope Regions Location | Dice mloU | Dice mloU | Dice mloU
71.49 57.89 | 68.56 55.32 | 70.26  57.09
68.36 53.32 | 69.94 56.07 | 70.38 57.23
70.06 54.33 | 68.87 54.08 | 71.12 55.80
69.97 56.28 | 66.61 52.64 | 70.98 56.91
69.64 55.09 | 66.96 52.60 | 71.59 56.57
71.32 58.04 | 68.65 53.84 | 70.54 55.04
72.10 57.65 | 70.25 57.31 | 73.24 59.82

® ¢ ¢ O o O
®e O e @ O o
® ¢ O ¢ O O e

Table 5: Ablation study on P validated on QaTa-COV19 dataset with R =
(0.2,0.5,0.8) and MosMedData+ dataset with R = (0.1,0.4,0.7).

p QaTa-COV19 MosMedData-+
Dice (%) mloU (%) | Dice (%) mlIoU (%)

3 82.85 69.91 70.58 55.27

5 83.88 72.63 72.36 58.38

7 81.53 69.27 71.49 56.24

tributes. As summarized in Table [d] under one attribute prompting, using Lo-
cation as textual prompts achieves the best performance. As the number of
attributes increases, textual information becomes richer and the model perfor-
mance gradually improves. Compared to SOTA approaches, ARSeg achieves the
best performance under five out of seven settings and is much more stable against
missing attributes.

Ablation Study on P. Quantitative results under various settings of P are
summarized in Table When using fewer cross-attention modules (i.e., a smaller
P), the meta vectors may not be fully updated into input-related vectors, re-
sulting in suboptimal prediction results. Comparatively, given a larger P, el-
ements within each meta vector may constantly interact with the same input
features, leading to poorer feature diversity. Therefore, the selection of P is task-
dependent and setting P = 5 achieves the best performance on QaTa-COV19
and MosMedData+-.

4 Conclusion

In this paper, we extend the MIRS task into a more realistic and challenging sce-
nario, namely language-guided segmentation with incomplete textual prompts.
To address this issue, we propose ARSeg, a vision-language model for balanced
attribute feature learning under imbalanced attribute distributions in textual
prompts. Specifically, based on the U-shaped CNN backbone and the BERT-
based encoder, an attribute-specific cross-modal interaction module is proposed
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to establish attribute-specific features for decoding, which allows the decoder to
accurately decode the features driven by any single attribute. In addition, an at-
tribute consistency loss and an attribute balancing loss are developed to stabilize
the training procedure under imbalanced attribute missing rates. Experimental
results across various attribute missing rates on two publicly-available datasets
validate the effectiveness of ARSeg for robust language-guided medical image
segmentation.
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