
Frequency-domain Multi-modal Fusion for
Language-guided Medical Image Segmentation

Bo Yu1†, Jianhua Yang2†, Zetao Du3, Yan Huang2,4, Chenglong Li5, and Liang

Wang2,4�

1 School of Computer Science and Technology, Anhui University
2 NLPR, MAIS, Institute of Automation, Chinese Academy of Sciences

3 School of Information Science and Technology, ShanghaiTech University
4 School of Artificial Intelligence, University of Chinese Academy of Sciences

5 School of Artificial Intelligence, Anhui University
wangliang@nlpr.ia.ac.cn

Abstract. Automatically segmenting infected areas in radiological im-
ages is essential for diagnosing pulmonary infectious diseases. Recent
studies have demonstrated that the accuracy of the medical image seg-
mentation can be improved by incorporating clinical text reports as se-
mantic guidance. However, the complex morphological changes of lesions
and the inherent semantic gap between vision-language modalities pre-
vent existing methods from effectively enhancing the representation of
visual features and eliminating semantically irrelevant information, ul-
timately resulting in suboptimal segmentation performance. To address
these problems, we propose a Frequency-domain Multi-modal Interac-
tion model (FMISeg) for language-guided medical image segmentation.
FMISeg is a late fusion model that establishes interaction between lin-
guistic features and frequency-domain visual features in the decoder.
Specifically, to enhance the visual representation, our method introduces
a Frequency-domain Feature Bidirectional Interaction (FFBI) module
to effectively fuse frequency-domain features. Furthermore, a Language-
guided Frequency-domain Feature Interaction (LFFI) module is incor-
porated within the decoder to suppress semantically irrelevant visual
features under the guidance of linguistic information. Experiments on
QaTa-COV19 and MosMedData+ demonstrated that our method out-
performs the state-of-the-art methods qualitatively and quantitatively.

Keywords: Medical Image Segmentation · Frequency-domain Features
· Multi-modal Fusion.

1 Introduction

The technology of medical image segmentation (MIS) is crucial for delineating
pathological areas of pulmonary infectious diseases, such as COVID-19. It facili-
tates the precise identification of lesions and greatly aids in diagnosis, treatment
† These authors contributed equally to this work.

The code is available at https://github.com/demoyu123/FMISeg.
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planning, and disease monitoring. With the rapid developments of deep learning,
numerous MIS methods based on CNN (e.g., U-Net [1] and U-Net++ [2]) and
hybrid CNN-Transformer (e.g., TransUNet [3] and SwinUnet [4]) architectures
have been proposed for the segmentation of pulmonary lesions from radiological
images. These methods substantially assist physicians in identifying and evalu-
ating pulmonary structures and pathological anomalies. Despite the remarkable
progress of these methods, the intricate morphological characteristics of lesion
regions (e.g., shape, size, and blurry boundaries) still pose critical challenges to
effectively boosting the segmentation accuracy of pulmonary lesions.

In clinical practice, pulmonary imaging is typically accompanied by clinical
text reports, which provide detailed descriptions of lesion regions, including their
position, shape, size, number, and other relevant characteristics. Inspired by the
significant performance improvement achieved by integrating textual information
with visual information in MedCLIP [5], the task of language-guided medical im-
age segmentation (LMIS) has attracted increasing attention [6,7,8,9,10,11,12,13].
This task involves providing a medical image along with its corresponding text
and predicting segmentation masks of pulmonary lesions. By leveraging the se-
mantic guidance from the text, LMIS approaches significantly improve segmen-
tation performance compared to uni-modal methods [1,2,3,4]. To bridge the se-
mantic gap between the medical image and the text in multi-modal frameworks,
various fusion strategies have been explored, where linguistic and visual fea-
tures are integrated either within visual encoder blocks (early fusion) [6,7,11]
or decoder blocks (late fusion) [8,9,10,12,13]. Among these methods, both uni-
directional interaction [8,9,10] and bidirectional interaction [12,13] between two
modalities through attention mechanisms, as well as language-guided adapters
in SAM [14] have been investigated to improve semantic alignment.

However, two key issues still hinder the accurate localization and segmenta-
tion of target lesions specified by textual descriptions. Firstly, the visual represen-
tation of the medical image lacks sufficient discriminative ability. The complex
morphological changes of lesions indicate that the extraction of distinguished fea-
tures is important for accurate segmentation, especially for the small or subtle
lesion regions. Compared to spatial-domain features, frequency-domain features
can enrich visual representations by providing complementary structural and tex-
tural information, which is beneficial for MIS [15]. Nevertheless, the integration
of frequency-domain features into LMIS task has not been explored to date. Sec-
ondly, semantically irrelevant visual information cannot be effectively suppressed.
Although existing LMIS methods [8,9,10,12,13] leverage attention mechanisms
to integrate visual and linguistic features, they often struggle to distinguish the
lesion areas described by the text from complex anatomical backgrounds. For
instance, the cross-modal attention in LanGuideSeg [8] is insufficient to elim-
inate irrelevant visual information within the decoder, leading to suboptimal
segmentation performance.

In this study, we propose a Frequency-domain Multimodal Interaction frame-
work (FMISeg) to address the aforementioned issues in LMIS task. FMISeg
follows a late fusion strategy to integrate textual information into high fre-
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Fig. 1. Overview of the proposed frequency-domain multimodal interaction method.

quency (HF) and low frequency (LF) features within decoder blocks. Specifically,
FMISeg first utilizes wavelet transform to generate HF and LF images from the
raw image. Then, HF and LF images are fed into a dual-branch encoder to extract
corresponding HF and LF features. Since HF features contain fine-grained tex-
tural details, while LF features encode high-level semantic contexts, their combi-
nation can enhance the representation of the raw image and contributes to more
accurate lesion segmentation. To this end, our method introduces a Frequency-
domain Feature Bidirectional Interaction (FFBI) module to fuse HF and LF
features before feeding them into a dual-branch decoder. Furthermore, to effec-
tively model the interaction between linguistic and visual features, we propose a
Language and Frequency-domain Feature Interaction (LFFI) module within the
decoder. This module first establishes bidirectional interaction between linguis-
tic and visual features through a cross-attention mechanism. The LFFI module
subsequently utilizes the generated filter weights to reweight the output visual
features, thereby suppressing semantically irrelevant visual information. We con-
duct experiments on the QaTa-COV19 [16] and MosMedData+[17] datasets to
validate the effectiveness and state-of-the-art performance of our method.

2 Methodology

An overview of our proposed method is illustrated in Fig. 1. The framework is
comprised of four key components, including a dual-branch visual encoder to
extract HF and LF features, a language encoder to extract linguistic features,
the FFBI module to exchange supplementary information between HF and LF
features at the final stage of the encoder, and a language-guided dual-branch
decoder with LFFI modules to effectively align linguistic and visual modalities.
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2.1 Visual and Linguistic Feature Extraction

Vision Encoder: For an input raw image I ∈ RH×W×3, we follow XNet [15]
to apply wavelet transform to decompose it into the LF image IL and the HF
image IH . These LF and HF images are subsequently fed into dual-branch visual
encoders (i.e., ConvNeXt-Tiny [18]) to extract LF and HF visual features at
different stages. Following previous works [10,11,12,13], we extract multi-stage
LF and HF features with downsampling rates of 4, 8, 16, and 32. The extracted
features are denoted as F1

m ∈ RH
4 ×W

4 ×C1 , F2
m ∈ RH

8 ×W
8 ×C2 , F3

m ∈ RH
16×

W
16×C3 ,

and F4
m ∈ RH

32×
W
32×C4 . Here,H and W represent the height and width of the

input image, and m ∈ {LF,HF}, where LF and HF indicate low frequency
and high frequency, respectively.
Language Encoder: For the input clinical text T ∈ RL, we follow prior works
[8,12,13] to adopt CXR-BERT [19] as the language encoder to extract word-level
linguistic features FT ∈ RL×C . Here, L and C denote the number of words in
the text and the channel dimension of features, respectively. Benefiting from
its domain-specific optimization for chest X-ray reports, the linguistic features
extracted from CXR-BERT can effectively facilitate semantic alignment between
textual prompts and medical images.

2.2 Frequency-domain Feature Bidirectional Interaction (FFBI)

The LF features can encode high-level semantic contexts (e.g., organ morphology
and lesion localization) and suppress noise interference. In contrast, HF features
retain textural details (e.g., lesion and tissue boundaries) but are susceptible to
HF artifacts and stochastic noise. To improve the segmentation of pulmonary le-
sions, we propose a Frequency-domain Feature Bidirectional Interaction (FFBI)
module at the final stage of visual encoders, as illustrated in the bottom-left
of Fig. 1. This module dynamically recalibrates HF features using LF semantic
guidance, while simultaneously refines LF features with HF boundary details.
Specifically, we leverage the cross-attention mechanism to model the bidirec-
tional interactions between LF features F4

LF ∈ RH
32×

W
32×C4 and HF features

F4
HF ∈ RH

32×
W
32×C4 . This process can be formulated as:

F̂4
HF = LN(F4

HF +MHCA(F4
HF ,F

4
LF ,F

4
LF )), (1)

F̂4
LF = LN(F4

LF +MHCA(F4
LF ,F

4
HF ,F

4
HF )), (2)

where LN(·) denotes layer normalization, MHCA(Q,K, V ) represents multi-
head cross-attention with inputs of query (Q), key (K), and value (V ). Through
bi-directional interaction, LF and HF features are respectively enhanced with
local textural details and global semantic information. As a result, the proposed
module yields more robust visual representations across diverse medical images.

2.3 Language and Frequency-domain Feature Interaction (LFFI)

To effectively model cross-modal interactions between linguistic features and LF
(or HF) features, we propose a Language and Frequency-domain Feature Inter-
action (LFFI) module, as illustrated in the bottom-right of Fig. 1. Specifically,
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the LFFI module first establishes interactions between linguistic features and
LF (or HF) features using two multi-head cross-attention structures. For clarity,
we take LF features FLF from arbitrary stages of the decoder as an example
and omit the specific stage index. The process can be represented as:

F
′

LF = MHCA(FLF ,FT ,FT ), (3)

F
′

T = MHCA(FT ,FLF ,FLF ). (4)

The interactions between linguistic and LF features via cross-attention are
inadequate to bridge the semantic gap between modalities, as standard cross-
attention may introduce semantically irrelevant noise and often struggles to cap-
ture fine-grained positional dependencies. To address this, we further design a
semantically irrelevant filter to fuse F

′

LF ∈ Rh×w×C and F
′

T ∈ RL×C , where
h and w denote height and width of the feature map, respectively. Specifically,
F

′

LF and F
′

T first perform the matrix multiplication and obtain the feature vector
FM ∈ Rh×w×L. Then, a linear projection layer followed by a sigmoid function is
applied to generate the filter weights with the same dimensions as F

′

LF . Finally,
the weighted features resulting from the element-wise multiplication between the
weights and F

′

LF are combined with encoder features via a skip connection to
produce the output features Fo

LF . This process can be described as:

FM = F
′

LF ⊗ (F
′

T )
⊤, (5)

Fo
LH = Conv(FLF + F

′

LF ⊙ δ(Linear(FM ))), (6)

where ⊗ denotes matrix multiplication, ⊙ means element-wise multiplication,
δ(·) represents the sigmoid function, Linear(·) indicates linear projection, Conv(·)
refers to convolution operation. Our dual-branch decoders progressively upsam-
ple the text-injected LF and HF features from high-level to low-level stages. Each
branch independently predicts masks using two separate segmentation heads,
which helps reduce learning bias. During training, we follow prior works [6,13]
to adopt Dice loss and cross-entropy loss to optimize dense predictions.

3 Experiments

3.1 Datasets and Evaluation Metrics

To evaluate our method, we conducted experiments on two public medical im-
age segmentation datasets with text prompts, including MosMeData+ [17] and
QaTa-COV19 [16]. MosMedData+ contains 2,729 COVID-19 lung CT scan slices
annotated with binary segmentation masks. It’s divided into 2,183 training, 273
validation, and 273 test samples. [6]. The QaTa-COV19 dataset contains 9,258
chest X-ray images, annotated with COVID-19 lesion details and textual descrip-
tions of infection and location. It’s split into 5,716 training, 1,429 validation, and
2,113 test samples. Following existing studies [6,7], we adopt two widely used
evaluation metrics, namely the Dice coefficient (Dice) and mean intersection-
over-union (mIoU), to evaluate the performance of the proposed method.
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Table 1. Performance comparison of our FMISeg with existing medical image seg-
mentation methods on the QaTa-COV19 and MosMedData+ datasets.

Methods Backbone Text QaTa-COV19 MosMedData+

Dice(%) mIoU(%) Dice(%) mIoU(%)

U-Net [1] CNN ✗ 79.02 69.46 64.60 50.73
UNet++ [2] CNN ✗ 79.62 70.25 71.75 58.39
nnUnet [22] CNN ✗ 80.42 70.81 72.59 60.36
TransUNet [3] Hybrid ✗ 78.63 69.13 71.24 58.44
Swin-Unet [4] Hybrid ✗ 78.07 68.34 63.29 50.19
UCTransNet [23] Hybrid ✗ 79.15 69.60 65.90 52.69

LViT-T [6] Hydrid ✓ 83.66 75.11 74.57 61.33
LGA [7] Transformer ✓ 84.65 76.23 75.63 62.52
CausalCLIPSeg [9] Hybrid ✓ 85.21 76.90 - -
RecLMIS [11] CNN ✓ 85.22 77.00 77.48 65.07
SGSeg [10] CNN ✓ 87.41 77.82 - -
LanGuideSeg [8] CNN ✓ 89.78 81.45 - -
MAdapter [12] CNN ✓ 90.22 82.16 78.62 64.78
TGCAM [13] CNN ✓ 90.60 82.81 77.82 63.69
FMISeg (ours) CNN ✓ 91.21 83.84 79.30 65.71

3.2 Implementation Details

We implemented our method in PyTorch [20] with an NVIDIA RTX 3090 GPU.
We adopted ConvNeXt-Tiny [18] as the backbone for the dual-branch visual
encoder. The model was optimized by the AdamW [21] with an initial learning
rate of 3e-4, which is eventually reduced to 1e-6, in conjunction with a cosine
annealing learning rate strategy. For fair comparisons, the input image resolution
was set to 224 × 224, and the default batch size was 32. The hidden dimension
of the interaction module was set to 768.

3.3 Comparison With State-of-the-Art Methods

We compared the segmentation performance of our method with a series of
state-of-the-art methods, including some classic uni-modal models (i.e., UNet [1],
UNet++ [2], nnUNet [22], TransUNet [3], Swin-UNet [4], and UCTransNet [23])
and all multi-modal models (i.e., LViT-T [6], LGA [7], CausalCLIPSeg [9], SGSeg
[10], LanGuideSeg [8], RecLMIS [11], MAdapter [12], and TGCAM [13]). The
comparison results are shown in Table 1. Note that the results of multi-modal
methods are directly cited from their original papers, while the performance of
uni-modal methods is taken from the reproduction provided by LViT [6]. It can
be observed that all methods without text show a significant performance gap
compared to methods with text. For example, our method outperforms the best
uni-modal nnUnet by 10.79% in Dice score and 13.03% in mIoU on the QaTa-
COV19 dataset. When compared with LGA, which is based on foundation model



Title Suppressed Due to Excessive Length 7

Fig. 2. Qualitative comparison of our method with uni-modal methods and multi-
modal methods on QaTa-COV19 (a-b) and MosMedData+ (c-d).

SAM, our method has 6.56% and 7.61% improvement in terms of Dice score and
mIoU on QaTa-COV19 dataset. Compared to methods using the same backbone,
such as TGCAM, MAdapter, LanGuideSeg, and SGSeg, our method achieves
superior performance on both datasets. Specifically, our method outperforms
the best method (i.e., TGCAM) by 0.61% in Dice score and 1.03% in mIoU
on QaTa-COV19 dataset, and by 1.48% in Dice score and 2.02% in mIoU on
MosMedData+ dataset.

We also provide a qualitative comparison with uni-modal methods (i.e., U-
Net and U-Net++) and multi-modal methods (i.e., LViT and LGA) in Fig. 2.
It can be observed that uni-modal methods exhibit noticeable segmentation er-
rors, particularly in boundary regions and detailed areas. While multi-modal
methods show improved performance, they still suffer from missing or inaccu-
rate segmentations in some complex and small areas. In contrast, our proposed
method demonstrates higher accuracy, with more precise segmentation results.

3.4 Ablation Study

Effectiveness of FFBI Module: Our proposed method first decomposes the
input raw image into LF and HF images, then establishes bidirectional inter-
actions between LF and HF features in FFBI module. We conducted ablation
studies to demonstrate the effectiveness of FFBI module, the experimental re-
sults are shown in Table 2. The models of #1, #2, and #3 are single-branch
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Table 2. The effectiveness of the FFBI module.

No. Model QaTa-COV19 MosMedData+

Dice(%) mIoU(%) Dice(%) mIoU(%)

#1 Raw Image 89.86 81.72 78.21 64.17
#2 HF Image 88.75 80.15 77.16 63.04
#3 LF Image 89.54 81.23 77.89 63.69
#4 Cat(HF, LF) 90.61 82.93 78.65 64.88
#5 FFBI(HF, LF) 91.21 83.84 79.30 65.71

Table 3. The impact of the numbers of LFFI layers. The LFFI layers in each branch
of the decoder range from 1 to 4. “No Text” means the absence of text in our method.

No. Model QaTa-COV19 MosMedData+

Dice(%) mIoU(%) Dice(%) mIoU(%)

#6 No Text 87.63 78.13 76.45 62.87
#7 1 layer 90.64 82.98 78.71 64.93
#8 2 layers 90.86 83.26 78.97 65.25
#9 3 layers 91.06 83.63 79.16 65.48
#10 4 layers 91.21 83.84 79.30 65.71

encoder-decoder models with inputs of raw, HF, and LF images, respectively.
The models of #4 and #5 are two-branch encoder-decoder models, they adopt
concatenation (Cat) and FFBI to fuse two modalities of visual features, respec-
tively. The experimental results show that the performance of models fusing
HF and LF visual features outperforms models using a single modality of visual
features. This indicates that HF and LF modalities contain complementary infor-
mation for segmentation. Furthermore, the FFBI module performs better than
simply concatenating HF and LF features, since the bidirectional interaction
with cross-attention is more conducive for mining complementary information
from each other.

The Impact of LFFI Layers: In our two-branch decoder, we progressively
inject textual information using the LFFI module and upsample the fused visual
features from high-level to low-level for mask prediction. Here, we conducted
ablation studies to investigate the impact of LFFI layers on segmentation per-
formance, experimental results are shown in Table 3. These results show that
Model #6 performs the worst on two datasets when textual information is ab-
sent. However, it still significantly outperforms all uni-modal methods in Table
1. As the layers of LFFI increase from high-level to low-level, the segmentation
performance improves gradually. These experimental results demonstrate that
the LFFI module effectively interacts with visual features and aligns the lesion
region with textual semantics in our decoder.
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4 Conclusion

In this paper, we propose a novel method FMISeg for language-guided medical
image segmentation. FMISeg improves the segmentation accuracy of lesion re-
gions from two aspects. Firstly, FMISeg extracts frequency-domain features and
fuses different components of features with a frequency-domain feature bidirec-
tional interaction module, resulting in the discriminative representation of visual
features. Secondly, a language and frequency-domain feature interaction module
is devised to effectively integrate linguistic features into frequency-domain fea-
tures. Experiments show that FMISeg achieves state-of-the-art performance on
the QaTa-COV19 and MosMedData+ datasets.
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