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Abstract. Accurate classification of muscle invasion in bladder cancer
using computer-aided diagnosis (CAD) is crucial for timely intervention
and improved prognosis. Despite advances in deep learning for medi-
cal image analysis, muscle invasion classification remains limited by the
scarcity of publicly available annotated datasets. To address this, we
introduce T2WI-BCMIC, the first expert-annotated dataset for blad-
der cancer muscle invasion classification. T2WI-BCMIC contains Non-
fat saturated T2-weighted magnetic resonance imaging (MRI) images
with five-class annotations, covering various invasion depths. We estab-
lish a benchmark using several popular deep learning architectures, pro-
viding a solid foundation for future comparisons. However, achieving
further performance improvements remains challenging due to the small
dataset size. Therefore, we propose a novel search-based data augmenta-
tion algorithm that increases data diversity by maximizing the divergence
from the class-specific manifold, while preserving the class distribution
to maintain class identity. Experimental results on T2WI-BCMIC show
that our algorithm outperforms existing methods, achieving significant
performance improvements. The T2WI-BCMIC dataset and benchmark
are available at: https://github.com/T2-MI/T2WI-BCMIC| for further
research.

Keywords: Bladder cancer dataset - Deep learning - Data augmenta-
tion.

1 Introduction

Bladder cancer, a significant urinary malignancy, ranks among the top 10 global
cancers, with approximately 500,000 new diagnoses and 200,000 deaths per
year [24I21)26]. Muscle invasion risk assessment is crucial for diagnosis, treat-
ment planning, and prognosis in bladder cancer [I5]. While MRI is increasingly
employed for this purpose, manual clinical interpretation is hindered by scarce
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expert availability, clinician fatigue, and inter-observer variability, reducing as-
sessment efficacy. Improving the accuracy of muscle invasion risk stratification
is therefore essential for better clinical outcomes.

To mitigate the limitations of manual assessment and advance muscle in-
vasion risk stratification, inherently a computer vision classification problem,
CAD is garnering increasing research interest. While CAD has progressed sig-
nificantly in medical image analysis, encompassing lesion classification [3525//1],
detection [23J8/13], and segmentation [6I2JTT], muscle invasion classification in
bladder cancer remains relatively under-explored. Current bladder cancer image
datasets predominantly address tissue classification or segmentation, as detailed
in Table [I}, tasks distinct from muscle invasion risk assessment. A major barrier
to progress is the lack of publicly available, annotated datasets for muscle in-
vasion classification, which hampers research and clinical translation. Creating
such datasets demands substantial clinical expertise [16] and faces challenges like
data privacy concerns, restricted access [297], and other obstacles, contributing
to the scarcity of public resources.

Table 1. Bladder medical image datasets available publicly, including multi-organ
datasets from TCIA (The Cancer Imaging Archive).

Dataset Source Task

Crowds-Cure-2018 [30] TCIA Segmentation

CT-ORG [22] TCIA Segmentation

Pan-Cancer-Nuclei-Seg [10] |TCIA Segmentation

T24 The Cancer Cell Institute at the Univer-|Segmentation
sity of Cambridge

Bladder MRI 2018 China University Computer Design|Segmentation

Segmentation Dataset (2018)|Competition

Bladder MRI 2019 International Symposium on Image|Segmentation

Segmentation Dataset (2019)|Computing and Digital Medicine

EBTC [14] DataCite Commons Classification

v s

VI-RADS 5

I-RA 1
Fig. 1. Examples from the T2WI-BCMIC dataset, illustrating five-class annotations.

Deep neural networks (DNNs) have demonstrated remarkable efficacy in med-
ical image classification [35I25J1]. However, their reliance on large datasets con-
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trasts sharply with the scarcity of labeled medical data, often leading to overfit-
ting. Data augmentation is a common solution, but conventional methods like
rotation and flipping are low-level, data-independent, and distribution-agnostic
operations [314], offering limited diversity and potentially distorting the true
data distribution. To address these shortcomings, we propose a novel augmenta-
tion algorithm that formulates augmentation as a search process. This approach
optimizes augmented samples by maximizing their divergence from the class-
specific manifold of original samples while preserving the inherent distribution
of the class, thereby enhancing both diversity and consistency.

To address the dataset gap in bladder cancer muscle invasion classification, we
introduce T2WI-BCMIC, a novel T2-Weighted Imaging (T2WI) dataset. Com-
prising 353 DICOM images with five-class VI-RADS [20] annotations, T2WI-
BCMIC is publicly released. Fig [f] illustrates example images and annotations.
We benchmark several popular deep learning approaches on T2WI-BCMIC to
establish a performance baseline and demonstrate the challenges of muscle in-
vasion classification in clinical settings. Furthermore, we evaluate our data aug-
mentation algorithm’s effectiveness in improving muscle invasion classification
performance across several different network architectures using our dataset.

In summary, our main contributions are:

— We introduce the first publicly available multi-class dataset specifically de-
signed for muscle invasion risk classification in bladder cancer, addressing
a critical gap in current research and providing a valuable resource for the
community.

— We perform a comprehensive benchmark evaluation of widely-used DNNs
on the T2WI-BCMIC dataset, establishing a robust performance baseline to
guide future studies in this domain.

— Leveraging the T2WI-BCMIC dataset, we propose a novel search-based aug-
mentation algorithm tailored for bladder cancer image analysis, which over-
comes the limitations of traditional augmentation methods and significantly
enhances classification performance.

2 T2WI-BCMIC Dataset

The T2WI-BCMIC dataset is created to address the lack of data for bladder
cancer muscle invasion classification, offering the first publicly available multi-
class dataset for this purpose. It ensures balanced representation across the five
VI-RADS categories [20], facilitating unbiased model development.

2.1 Data Collection

Table 2] summarizes the key parameters for data acquisition and the characteris-
tics of the T2WI-BCMIC dataset. The dataset is predominantly male (age range
40-85 years) and reflects the demographics of patients undergoing clinical muscle
invasion assessment. Detailed age and gender distributions are provided in the
supplementary materials.
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Table 2. Overview of the T2WI-BCMIC, including key characteristics and imaging
protocols.

Item Details Comments
Number of Images |335 Non-Fat T2WI
Number of Cases 159 patients Male-biased, higher male incidence
Gender Distribution [3.7:1 male-to-female Consistent with male prevalence
Age Range 40 to 85 years Typical age range
Risk Categories 5 categories VI-RADS based
Collection Period  |2013-2023 Ten-year collection
Imaging Equipment |3.0T MRI High-resolution imaging
Sample Source the First Affiliated Hospi-|Clinically reliable data
tal, Sun Yat-Sen University
Scanning Protocol |T2-weighted PROPELLER |Optimized for bladder cancer

Data are retrospectively collected over a ten-year period (2013-2023) from
the First Affiliated Hospital, Sun Yat-Sen University, a leading medical center,
with ethical approval granted by the hospital’s Ethics Committee. All images are
anonymized to ensure patient privacy. Imaging is conducted using a 3.0T MRI
system (Signa Pioneer, GE Healthcare) with a 32-channel body coil. Patients
follow a standardized preparation protocol, including voiding two hours prior to
the MRI and refraining from urination and fluid intake until completion. The
imaging protocol employe an axial T2-weighted PROPELLER sequence with the
following parameters: TR/TE = 4817/125.7 ms, slice thickness = 4 mm, FOV
= 220 mm, acquisition matrix = 320, and NEX = 3.

2.2 Dataset Annotation

All samples are annotated by a team of seasoned radiologists using the VI-RADS
criteria to assess the risk of bladder cancer invasion. Three physicians, each
possessing at least five years of experience, contribute to the annotation process,
analyzing a maximum of 30 images per week to ensure annotation accuracy.

3 Method

This section presents a search-based algorithm for bladder image augmen-
tation, consisting of three core components: the Constrained Optimization
Model (COM) for setting optimization criteria, the Keypoint Detection Mod-
ule (KPDM) for identifying anatomical key points, and the Augmented Data
Search Module (ADSM) for optimizing key point transformations to create di-
verse augmented samples. These modules work together to balance data diversity
enhancement with class identity preservation, as illustrated in Fig

3.1 Constrained Optimization Model (COM)

To address the limitations of conventional augmentation methods, our algorithm
employs a constrained optimization model for bladder image augmentation, in-
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Contours Random sample b
extractor points il :

Fig. 2. Bladder image data augmentation algorithm based on constrained optimization
using affine transformation (AT).

tegrating the KPDM and ADSM modules. The overarching approach maximizes

the divergence between augmented images (z’) and the original data distribu-

tion to enhance data diversity, while ensuring that each augmented image (z’)

effectively retains the class identity of its corresponding original image (z).
The optimization problem is mathematically formulated as:

2
k
max R(z') = Z i Z Wi Vi
=1 \jeN(a)
subject to 1z’ = Aug(x) (1)

x € Dy,
softmax(logits(z)). = softmax(logits(x)).

or logits(z'), > logits(x),

In this formulation, the ADSM searches for augmented samples (') that maxi-
mize the divergence from the original data manifold, as measured by the Manifold
Regularization Score R(z'), which quantifies how poorly the augmented sam-
ples align with the underlying low-dimensional manifold of the original data.
This score is computed using top-k Laplacian eigenvalues ()\;) and neighbor-
hood contributions (V;, weighted by ;;), learned from a pre-trained model.
The ADSM-driven optimization promotes data diversity while ensuring class
identity preservation through a broader constraint, either by maintaining soft-
max probabilities or keeping the logit score for the correct class (D, is the data
set of the corresponding category) in the augmented sample at least as high as
in the original.

3.2 Keypoint Detection Module (KPDM)

In the absence of bladder/lesion annotations in the T2WI-BCMIC dataset, the
KPDM autonomously identifies key points for image deformation. This mod-
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ule integrates an edge detection algorithm [33] with geometric priors to detect
relevant key points in the bladder. Initially, an edge detection algorithm is ap-
plied to delineate boundary regions. For each detected contour, the mean pixel
intensity uj within the contour region Cj, is computed (Eq. . Contours with
an intensity below a predefined threshold (u; < umin) are excluded to eliminate
irrelevant boundaries. Subsequently, geometric properties—such as the area Ay,
centroid position Cf, and position bias By, which represents the squared L1 dis-
tance from the contour’s centroid to the image center (Eq. —are calculated.
The relevance probability Py of each contour is then determined by a weighted
combination of area and position bias (Eq. . These combined steps form the
Contours extractor in Fig[2l Finally, key points are randomly sampled from the
top-k contours, ranked by their relevance probability.

1
w=gr ¥ 1) 2)

PECk
Bk = HCk - Cimage”? (3)
Py=a- Ay +B- By (4)

The method integrates geometric priors with edge detection to reliably iden-
tify key points. First, contours are filtered based on pixel intensity, and then
ranked using the area and position bias, which reflect their alignment with the
image center. The relevance probability guides the selection of the most relevant
contours, prioritizing those that are geometrically significant and structurally
consistent with the bladder anatomy.

3.3 Augmented Data Search Module (ADSM)

The ADSM integrates constraints to maintain the class identity of augmented
samples, ensuring alignment with the original data distribution. By balancing
data diversity and class identity preservation, it identifies optimal key point
transformations, producing augmented samples that enhance diversity while re-
taining the original data’s inherent characteristics. To effectively address this,
the Genetic Algorithm (GA)[I8] offers a robust solution. Within this framework,
the GA evolves candidate transformations over generations, selecting the best
transformations based on manifold regularization scores and class identity preser-
vation. Crossover or mutation create new transformations, which are evaluated
in subsequent generations. The process iterates until convergence, producing op-
timal transformations for generating augmented samples. The pseudocode of the
full search process is detailed in the supplementary material.

4 Experiments and Results

We evaluate several widely-used networks and our proposed augmentation al-
gorithm on the T2WI-BCMIC dataset. The experimental details and results,
presented below, demonstrate the method’s effectiveness.
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4.1 Implementation Details

Five-fold cross-validation on T2WI-BCMIC is used to evaluate network perfor-
mance. Training is performed for 200 epochs with a batch size of 16, utilizing
SGD optimization and a weight decay of 5e-4. Initial learning rates are set to
0.1 for DenseNet121, 0.001 for VGG, and 0.01 for other networks. For the aug-
mentation comparative studies, MRI images are preprocessed to an 8-bit integer
format ([0, 255]). The augmentation protocol replicates the benchmark setup,
with a uniform initial learning rate of 0.001 for all networks. The parameters
of GA are as follows: a population size of 100, a crossover probability of 1.0,
and a mutation rate of 1/16 per coordinate, with a total of 16 coordinates. And
our method selects three optimal images for expanding the training data. All
experiments are conducted with NVIDIA GeForce RTX 3090 GPU.

4.2 Main Results

In the initial phase of our study, we benchmarke several commonly used net-
work architectures: GoogleNet [28], VGG [27], ResNet variants[932/5/34], and
DenseNet121[12], evaluating their performance based on accuracy and Fl-score.
As shown in Table 3] the ResNet variants, Res2Net50 and ResNest50, initialized
with pre-trained weights from natural image datasets, achieve the highest per-
formance, with the same accuracy of 74.55%. Their excellent performance high-
lights the effectiveness of transferring features from natural images to medical
data for bladder cancer muscle invasion classification. In contrast, GoogleNet
and DenseNet121 offer a good trade-off between computational efficiency and
performance, while VGG provide stable results at higher parameters.

After benchmarking the initial network performance, we evaluate several con-
ventional and state-of-the-art (SOTA) augmentation methods, comparing their
performance against our proposed approach. As shown in Table [4 our method
consistently outperforms all evaluated networks. For instance, on GoogleNet, it
achieves a accuracy of 76.79% and an F1-Score of 76.70%, with improvements of
11.05% and 12.08% over the baseline, respectively. In contrast, traditional meth-
ods such as randomRotation (RR) and Cutout, as well as SOTA techniques like
TrivialAugment (TA) and RandAugment (RA), show inferior results. For ex-
ample, Cutout achieves only 62.13% accuracy and 61.99% F1-Score behind the
baseline on GoogleNet, while TA and RA fall behind our method, with accu-
racies of 68.77% and 68.44%, respectively. These results highlight that existing
methods struggle with complex medical images like bladder cancer, while our
tailored approach significantly boosts performance for this task.

4.3 Ablation Results

The ablation study in Table [§] confirms the effectiveness of the KPDM and
ADSM. Integrating either module individually with Res2Net50, ResNest50, or
GoogleNet improves performance over the baseline. KPDM alone boosts accu-
racy and F1-Score, while ADSM independently also delivers significant gains.



8

H. Huang et al.

The highest performance is achieved when both modules are combined, under-
scoring their synergistic effect in enhancing the augmentation method’s overall

effectiveness.

Table 3. Classification results of different networks (Accuracy and F1-Score in %,
Parameters in M, FLOPs in G).

Method Accuracy F1-Score Parameters FLOPs
VGG16 71.21+6.08 70.89+6.24 165.74 20.27
VGG19 71.65+4.36 71.50+4.24 171.05 25.71
GoogleNet 71.93+5.00 71.08+5.83 6.30 34.28
ResNet18 65.05+3.61 64.30+4.36 11.17 35.70
ResNet32 69.10+6.48 68.38+6.86 20.10 69.62
Res2Net50 74.55+2.74 73.98+3.13 23.66 5.62
ResNest50 74.554+4.12 73.92+4.31 25.44 7.09
ResNext50 62.42+5.10 62.39+5.74 14.79 49.20
DenseNet121 69.14+5.66 68.80+5.48 6.95 58.10

Table 4. Classification results of different augmentation methods (Unit: %).

Method Res2Net50 ResNest50 GoogleNet
Accuracy F1-Score | Accuracy F1-Score | Accuracy F1-Score

Baseline | 70.75+5.01 70.08+5.20 | 73.87+5.10 73.38+5.33 | 65.744+3.41 64.62+2.71
RR 73.17+1.78 72.90+1.83 | T4.57+4.95 T4.34+4.67 | 68.024+4.07 67.80+3.76
Cutout[4]| 70.24+5.71  69.72+6.19 | T4.73+4.28 T4.11+4.69 | 62.13+4.74 61.9945.14
TA[19] T7.47+4.60 77.29+4.49 | 75.82+3.82 75.4543.86 | 68.77+5.57 68.19+5.64
RA[3] 74.66+3.93 73.92+4.27 | 75.74+3.78 75.29+3.43 | 68.44+5.79 66.58+8.71
SA[L7] 78.46+5.20 78.02+5.74| 73.87+6.34 73.55+6.57 | 71.43+8.27 70.98+8.14
Ours 77.63+4.61 77.45+5.17 [80.28+4.22 79.61+4.51|76.79+6.18 76.70+6.15

Table 5. Classification results of module ablation studies (Unit: %).

Module Res2Net50 ResNest50 GoogleNet
KPDM ADSM| Accuracy F1-Score | Accuracy F1-Score | Accuracy F1-Score
- - 70.75+5.00 70.08+5.20 | 73.87+5.10 73.3845.33 | 65.74+3.41 64.62+2.71
v - 76.614+3.49 76.1443.53 | 77.91+43.49 77.18+4.07 | 73.71+6.74 73.48+6.82
v 77.01+3.77 76.68+3.66 | 77.27+3.67 77.07+3.82 | 74.68+5.39 74.14+5.09

v v

77.63+4.6177.45+5.17

80.28+4.22 79.61+4.51

76.79+6.18 76.70+6.15
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5 Conclusion

This paper introduces T2WI-BCMIC, the first publicly available multi-class
dataset for bladder cancer muscle invasion risk, comprising 159 patient cases that
reflect the natural distribution of the disease, addressing a gap in the field. We
benchmark a series of DNNs on this dataset to evaluate their performance. Ad-
ditionally, recognizing the limitations of traditional data augmentation methods,
we propose a novel search-based augmentation algorithm specifically designed for
bladder cancer images to increase diversity and maintain consistency. Extensive
experiments demonstrate the effectiveness of our approach. Moving forward, We
aim to expand the dataset with additional modalities to further advance CAD
research for multi-class muscle-invasive bladder cancer classification.
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