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Abstract. Glioma remains one of the most lethal malignancy, mak-
ing accurate prognosis crucial for personalized treatment and improved
patient outcome. Existing models based on non-invasive magnetic reso-
nance imaging (MRI) offer convenience, but they suffer from the poor
performance and generalizability compared to genomic biomarkers, lim-
iting their clinical adoption. Genomic biomarkers, such as IDH mutation
and 1p/19q co-deletion, provide superior prognostic value but are re-
stricted by their reliance on invasive surgical sampling. In this study, we
hypothesize that these genomic biomarkers can guide the development
of more robust MRI-based prognostic models, and propose a genomics-
guided prompt learning framework that leverages both MRI and tran-
scriptomic data to enhance survival prediction. Specifically, we introduce
a novel visual modeling strategy for comprehensive glioma MRI rep-
resentation and a Prompt-bridged Attention mechanism that can fuse
multiple modalities during training and enhance visual representations
during inference. Experimental results demonstrate that our proposed
method achieves c-indeces of 0.6709 and 0.6904 on UCSF-PDGM and
TCGA-GBM datasets, respectively, with highly significant p-values of
5.27 × 10−14 and 6.72 × 10−7. These results substantially outperform
existing methods, presenting a promising step toward reliable and non-
invasive glioma prognosis prediction.
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1 Introduction

Glioma is the most common and lethal primary malignancy in the central ner-
vous system. [1] The highly heterogeneous prognosis of patients diagnosed with
glioma, including extreme short- and long-term survival[2], renders optimal decision-
making in clinical practice challenging. Improving survival prediction holds key
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importance for achieving more informed clinical decision-making and person-
alized treatments. Although some molecular pathological biomarkers, such as
isocitrate dehydrogenase (IDH) mutation and chromosome 1p/19q co-deletion
status, can accurately prediction prognosis[3], these factors require invasive sur-
gical sampling and expensive equipment. These shortcomings are the main barri-
ers to the wide application of molecular pathological biomarkers in the prediction
of glioma prognosis.

Magnetic resonance imaging (MRI) as a noninvasive alternative, plays a piv-
otal role in glioma diagnosis and treatment monitoring in clinical practice. Multi-
ple studies[4, 5, 6] have underscored the prognostic value of deep learning derived
MRI radiomic features in glioma patients. However, the use of radiomic features
for survival prediction is susceptible to intra-institutional and inter-institutional
imaging data heterogeneity, which results in poor generalization performance.
In addition, the survival prediction using radiomic features is not as significant
as using pathological molecules.

Some studies[7, 8, 9, 10, 11] have used MRI to identify molecular alterations
of glioma patients, with accuracy of more than 85%. For example, Wu et al.[11]
constructed a multi-task deep learning model to predict molecular alterations,
grade, and prognosis of glioma patients. Other study[12] use the fusion of molecu-
lar status and radiomics for survival prediction. However, the multi-modal meth-
ods that fuse radiomics and molecular status, make no sense for prognostic pre-
diction in a non-invasive way.

Therefore, we use genomic information to guide the MRI-based model only
during the training process and redesign the representation of glioma MRI im-
ages to address the poor generalization performance and significance in predict-
ing survival of glioma. We propose a genomics-guided prompt learning frame-
work, in which prompt-bridged attention can realize multi-modal fusion between
transcriptomic profiles and MRI images of glioma patients and enhance visual
representations. Our main contributions are summarized as follows:

– We propose a genomics-guided prompt learning framework, to excavate gene-
vision correlations affecting prognosis from unpair MRI and genetic data.

– We design a visual modeling strategy that can better representation of the
glioma MRI images.

– The proposed Prompt-bridged Attention contains a prompt embedding token
as bridge and gene-to-prompt and prompt-to-visual cross-attention to realize
multi-modal fusion and enhance the unimodal representations of images.

– The experimental results and Kaplan-Meier analysis indicate that our pro-
posed method achieves significant improvements in both robustness and sig-
nificance of survival prediction, which is helpful for clinical treatment.

2 Methods

In this section, we present the overall description of our proposed genomics-
guided prompt learning framework for excavating gene-vision correlations af-
fecting prognosis from unpair MRI and genetic data. Then, we detail the data



Genomics-Guided MRI Model for Glioma Prognosis 3

processing and feature extraction for each modality. After that, we elaborate on
the key components of our proposed framework.

2.1 Pairing MRI images and genetic data from different sources

We designed a method to pair these MRI images and bulk transcriptome data
with survival state associations from different samples and different sources as
much as possible. Based on the 2021 WHO classification of tumors of the cen-
tral nervous system, we believe that if two samples have similar key clinical
information, especially molecular pathology characteristics, they have similar
survival risks. Thus, we organized each sample’s clinical information into a tex-
tual description that included gender, age, survival time, and events, as well as
molecular pathology information obtained through invasive methods. Then, we
used BioClinicalBERT[13] to encode the caption to obtain a representation vec-
tor for each sample, and then performed cosine similarity calculations Sim<i,j>
between the sample i from MRI images group and the sample j from the bulk
transcriptome group. This method is only used to form our training data.

2.2 Visual modeling strategy for glioma MRI images

Previous studies [4, 5, 6] of using radiomics features for survival prediction have
shown poor generalization and significance rather than using pathology or ge-
nomics due to the lack of heterogeneity between visual features of different sur-
vival subtypes and domain shift among datasets. Some studies[11, 14] used Class
Activation Mapping (CAM) to visualize prognostic-related image regions in the
output of model, found that the model focused mainly on the tumor core region
with low-risk group while focused more on the edema region with high-risk group.
Inspired by this finding, we design a visual modeling strategy that respectively
encoding the tumor core regions and edema regions in the MRI image. Specif-
ically, we use segmentation masks to extract the tumor core region and edema
region from MRI images respectively, and then use ResNet-10 to encode them.
Given the MRI image data IV ∈ R4×(H×W×D) of a sample, the ResNet-10 as
vision encoder is used to extract features from the tumor core region VC and
edema region VE , the whole procedure of getting vision features fv of input MRI
image could be formulate as below:

fc = V isionEncoder(Icore) ∈ RC1×(
H
4 ×W

4 ×D
4 )

fe = V isionEncoder(Iedema) ∈ RC1×(
H
4 ×W

4 ×D
4 )

f ′
c = GlobalMaxpool(fc)

f ′
e = GlobalMaxpool(fe)

V = [f ′
c, f

′
v] ∈ RC ,

(1)

where H,W,D is the voxel size of input MRI image, C1 is the dimension of
encoded features and C = 2×C1, [·] denotes the concatenate on last dimension.
Notably, the low-level features (correspond to feature map is 1/4 resolution of
the input image) of ResNet-10 output is used as the representation.
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2.3 Encoding gene expression based on transcriptomic data

We have collected transcriptome profiling of several glioma patient cohorts from
some database[15, 16]. However, the cohort size of these datasets (less than
1k) is sparse compared to the feature dimension, i.e., the number of sequenced
genes (usually 20k-60k), which leads to the potential problem of curse of dimen-
sionality [17] when using the raw data to training. Therefore, it is imperative
to preprocess the gene expression data to filter gene features. First, the mul-
tiple cohort datasets are combined together and the low expression genes with
TPM mean values less than 1 are removed, which could be noise signals in-
duced by sequencing techniques. Next, the gene expression data, represented as
log2(TPM + 1), underwent filtering to exclude genes with standard deviation
(SD) greater than 1, which are more affected by biological heterogeneity instead
of gliomas. Then, the scFoundation[18] is used as encoder to convert the gene
expression data to a gene embedding, which can also helps to remove the batch
effect cross multiple datasets. Finally, a project module is introduced to align the
dimensions of gene embedding with visual features. Given the gene expression
data IG = {g1, g2, · · · , gn} ∈ RN of a sample, the encoded gene embedding is
G ∈ RN×C :

Fg = GeneEncoder(IG) ∈ RN×C2

G = LN
(
σ(FgMg)

)
∈ RN×C ,

(2)

where N is the number of filtered gene, C2 is the dimension of the gene embed-
ding, C corresponds to the dimension of the visual features V, σ denotes the
GELU[19] activation function, LN denotes performing layer normalization[20]
on last dimension of the matrix, Mg ∈ RC2×C is the project matrix.

2.4 Prompt Bridge Attention with visual & Gene features

Once the visual features V and genetic features G have been encoded and
dimension alignment, the next step is fusing the visual and genetic features
together. In this section, we propose a Prompt-bridged Attention method for
multi-modal fusion during training and enhanced visual representations during
inference. Different from previous works using cross-attention mechanism that
computing between the image features and gene embedding, the computing of
cross-attention is divided into two parts in our proposed method. Specifically, a
learnable prompt embedding P ∈ Rm×d (bridge prompt embedding in Fig 1) is
introduced to learn critical features from gene embedding by Genetic-to-prompt
(G2P) Attention and inject visual-genetic related knowledge into visual features
by Prompt-to-visual (P2V) Attention. It is worth noting that the G2P Attention
is only computed to inject features into the prompt during the training:

Ag2p = Softmax

(
(PWp)× (GWg)

T

√
d

)
· (GUg)

A′
g2p = P+ LN(Ag2p)

Hg = Sigmoid(A′
g2pWo) ,

(3)
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Fig. 1. The overview of the our proposed method. The model has different
forward propagation processes during (a) training stage and (b) inference stage. The
visual modeling strategy in the proposed methods is used to represent glioma MRI
images, and the prompt-bridged attention is used to realize multi-modal fusion between
transcriptomic profiles and MRI images of glioma patients in the training and enhance
visual representations during inference. It is noted that the genetic branch is only used
during training. Different optimizer targets are used for the visual branch (left region
in this figure) and genetic branch (right region in this figure).

where Wp,Wg, Ug ∈ Rd×d and Wo ∈ Rd×1 are learnable parameters.
After that, the P2V Attention is computed to inject visual-genetic related

knowledge into visual features from prompt embedding P:

Ap2v = Softmax

(
(VZv)× (PZp)

T

√
d

)
· (GKp)

A′
p2v = V + LN(Ap2v)

Hv = A′
p2vZo ,

(4)

where Zp, Zv,Kp ∈ Rd×d and Zo ∈ Rd×1 are learnable parameters.
To avoid modal interference caused by unpaired data, the output Hv and Hg

have different optimizer targets. The output of gene branch Hg is supervised by
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risk label R (binary label, risk or high, which is correspond to the risk group of
samples from genomics cohort) and uses binary cross entropy as the loss function:

Lbce =
1

N

N∑
i=1

Rlog(Hg + (1−R)log(1−Hg), (5)

while the output of vision branch Hp is supervised by overall survival times and
death censorship, the negative log partial likelihood loss (NLL loss)[14] would
be used as loss function:

Lsurv = − 1

NE=1

∑
i:Ei=1

Hv − log
∑

j∈ℜ(Ti)

exp(Hv)

 , (6)

where Ti, Ei are the event time and event indicator respectively. where NE=1 is
the number of patients with an observable event, the risk set ℜ (Ti) is the set of
patients still at risk of failure at time t. The total loss L is the sum of binary
cross entropy loss plus NLL loss: L = Lbce + Lsurv .

3 Experiments

3.1 Datasets

In this paper, we use three MRI datasets for training, including BraTS-TCGA-
LGG(n=61)[21, 22], UPENN-GBM(n=609)[23, 24] and CPTAC-GBM(n=22)[25,
26], while the UCSF-PDGM(n=494)[27, 28] and BraTS-TCGA-GBM(n=96)[22,
28] are used as external test data for evaluating all methods. It is important
to note that the datasets for training and test are collected from different cen-
ters and studies, which is very challenging for the generalization ability of the
model. For genomic data, we have collected transcriptome profiling from four
cohorts, including TCGA-LGG(n=513)[21],TCGA-GBM(n=160)[21], CPTAC-
GBM(n=203)[26] and CGGA(n=970)[16]. It is important to note that the ge-
netic data is used only in the training stage of our proposed method.

3.2 Metrics

We use c-index as evaluation metrics. The c-index, also known as the concordance
index, is a metric used to evaluate the performance of survival analysis models.
It measures the ability of a model to correctly order pairs of individuals in terms
of their predicted survival times. The c-index can be formulated as follows:

c-index =
1

n(n− 1)

n∑
i=1

n∑
j=1

I(Ti < Tj)(1− cj) , (7)

where n is the number of cases, Ti and Tj are the survival times of i-th patient
and j-th patient. I(·) is the indicator function, which takes the value 1 if its
argument is true, and 0 otherwise. cj is the right censorship status.
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Besides, we utilize Kaplan-Meier analysis[29] to visualize the survival events
of all patients, analysis results are shown in Fig 2. We stratify all patients into
low risk and high risk group according mid-value of the predicted risk scores
from methods. Meanwhile, we also utilize Log-rank test[30] (p-value) to measure
the statistical significance between the overall survival time of the low risk and
high risk group. A p-value of 0.05 or lower is considered statistically significant.

3.3 Comparison Studies

As we can see from Table 1, our proposed method achieves best performance on
both UCSF-PDGM and TCGA-GBM datasets. The method proposed by Wu et
al. achieved the best results among the previous methods. Compared to method
proposed by Wu et al., our proposed method improves the c-index by 9.48% on
the UCSF-PDGM dataset and 8.83% on the TCGA-GBM dataset. In addition,
our proposed method is highly significant in distinguishing high-risk group from
low-risk groups, with p-values of 5.27× 10−14 and 6.72× 10−7 on UCSF-PDGM
and TCGA-GBM, respectively, both much smaller than 0.05.

Fig. 2. The Kaplan-Meier analysis results of methods in comparison studies.
Figures of the first row are the results on UCSF-PDGM dataset and the second row are
the results on TCGA-GBM dataset. The shadow of the curve represents the confidence
interval of the c-index.

3.4 Ablation Studies

In this section, we conducted several extra experiments to further discuss the im-
pacts of visual modeling strategy and prompt-bridged attention in our proposed
method. The results are shown in Table 2.



8 Y Zhong et al.

Table 1. Comparison studies on test datasets. Method and results using gray
fonts are not included as one of the comparison experiments for the uni-modal methods

Methods UCSF-PDGM TCGA-GBM
c-index ↑ p-value ↓ c-index ↑ p-value ↓

Lee et al.[6] 0.5169 3.27× 10−1 0.5962 1.03× 10−1

Wu et al. [11] 0.5761 1.82× 10−3 0.6021 2.17× 10−2

Gomaa et al.† [12] 0.4988 7.24× 10−1 0.5479 5.51× 10−1

Gomaa et al.*[12] 0.6395 2.02× 10−19 0.4499 7.82× 10−1

Our Method 0.6709 5.27× 10−14 0.6904 6.72× 10−7

† Inference with MRI images only.
∗ Inference with MRI images and molecular information.

Table 2. Ablation Studies of our proposed method. The VMS denotes the
Visual Modeling Strategy in the proposed method. The BP, Ag2p and Ap2v stand for
Bridge Prompt, G2P Attention and P2V Attention respectively, which are the key
components of Prompt-bridged Attention in our proposed method.

Train Data Components UCSF-PDGM TCGA-GBM
VMS1 BP 2 Ag2p

3 Ap2v
4 SG5 c-index ↑ p-value ↓ c-index ↑ p-value ↓

MRI × × × × × 0.5516 3.07× 10−2 0.5747 2.13× 10−1

MRI ✓ × × × × 0.6506 2.51× 10−8 0.6554 1.57× 10−3

MRI ✓ ✓ × ✓ × 0.6453 1.97× 10−10 0.6479 1.03× 10−3

MRI+Gene ✓ ✓ ✓ ✓ × 0.6339 2.57× 10−9 0.6672 7.57× 10−5

MRI+Gene ✓ ✓ ✓ ✓ ✓ 0.6709 5.27× 10−14 0.6904 6.72× 10−7

1 VMS stands for Visual Modeling Strategy.
2 BP stands for Bridge Prompt.
3 Ag2p represents G2P Attention in Fig 1.
4 Ap2v represents P2V Attention in Fig 1.
5 SG stands for Supervised Gene branch.

Impacts of Visual Modeling Strategy. Compared to the baseline model(the
first row in Table 2), the visual modeling strategy for glioma MRI images con-
tributed the greatest performance improvement in all components. Besides, our
method based on the strategy only could well outperform the compared methods,
which proves the strategy is so effective.

Impacts of Prompt-bridged Attention. We have two major observations
from last two rows in Table 2. First, the components (BP, Ag2p and Ap2v) con-
tained in Prompt-bridged Attention do not exist independently, but function in
combination. Adding single of them does not improve performance. Second, su-
pervised Gene branch(SG) makes Prompt-bridged Attention work properly and
further improve the performance, which helps to eliminate the information dam-
age during multi-modal fusion caused by sample-sample mismatch and maintain
feature representation of Gene branch.
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4 Conclusion

In this paper, we propose a genomics-guided prompt learning framework for sur-
vival prediction from glioma MRI images, in which the visual modeling strategy
is used to conduct significantly feature representation of glioma MRI images
and the prompt-bridged attention module is designed to learn visual-genetic
correlations from unpaired MRI images and genetic data and enhancing visual
representations during the inference procedure. The experimental results on the
UCSF-PDGM and TCGA-GBM datasets indicate that our proposed method
achieves significant improvements in both robustness and significance of survival
prediction. Besides, the Kaplan-Meier analysis suggests that the predicted risk
scores from the model could serve as a significant marker to distinguish high-risk
and low-risk groups in glioma patients, which is helpful for clinical treatment.
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