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Abstract. Psoriasis (PsO) severity scoring is vital for clinical trials but
is hindered by inter-rater variability and the burden of in-person clinical
evaluation. Remote imaging utilizing patient-captured mobile photos of-
fers scalability but introduces challenges, such as variations in lighting,
background, and device quality that are often imperceptible to humans
but may impact model performance. These factors, coupled with incon-
sistencies in dermatologist annotations, reduce the reliability of auto-
mated severity scoring. We propose a framework to automatically flag
problematic training images that introduce biases and reinforce spurious
correlations which degrade model generalization by using a gradient-
based interpretability approach. By tracing the gradients of misclassi-
fied validation images, we detect training samples where model errors
align with inconsistently rated examples or are affected by subtle, non-
clinical artifacts. We apply this method to a ConvNeXT-based weakly
supervised model designed to classify PsO severity from phone images.
Removing 8.2% of flagged images improves model AUC-ROC by 5%
(85% to 90%) on a held-out test set. Commonly, multiple annotators
and an adjudication process ensure annotation accuracy, which is ex-
pensive and time-consuming. Our method correctly detects training im-
ages with annotation inconsistencies, potentially eliminating the need for
manual reviews. When applied to a subset of training images rated by
two dermatologists, the method accurately identifies over 90% of cases
with inter-rater disagreement by rank-ordering and reviewing only the
top 30% of training data. This framework improves automated scoring
for remote assessments, ensuring robustness and scalability despite vari-
ability in data collection. Our method handles both inconsistencies in
image conditions and annotations, making it ideal for applications lack-
ing standardization of controlled clinical environments.

Keywords: Dermatology · Psoriasis · Multi-instance Learning · Ex-
plainability · Gradient Tracing · Spurious Correlations
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1 Introduction

Psoriasis (PsO) is a chronic systemic inflammatory disease that affects 2%-3%
of the global population and is associated with comorbidities such as psoriatic
arthritis (PsA), diabetes, and cardiovascular diseases [28, 2]. PsO severity assess-
ment is essential for decision-making during clinical trials, as treatment selection
is based on disease severity. Dermatologists use the Psoriasis Area and Severity
Index (PASI) as the gold standard for quantifying PsO, scoring lesion extent
and severity on a scale of 0–72 [2]. Cases are then classified as mild, moderate,
or severe based on predefined thresholds. However, in-clinic evaluations impose
a logistical burden on both patients and physicians. Combining remote imaging,
where patients capture images using mobile devices, with deep learning-based
automated PASI scoring offers a scalable alternative. This approach reduces the
need for in-person visits, minimizes subjectivity, and streamlines disease mon-
itoring [12, 8, 23, 9]. Despite advancements in deep learning-based PsO assess-
ment, existing models face several limitations, such as extensive pre-processing
using bounding boxes [12], background removal [12, 8, 23], and exclusion of clin-
ically relevant regions [25, 23] which are difficult to detect. Some approaches use
separate models for regional scoring [9] or distinct computations for erythema,
induration, desquamation, and lesion area ratio [17, 18] adding to complexity.

Despite being scalable, remote imaging can introduce significant variability in
illumination, background, and device quality, which can lead to spurious correla-
tions and degrade model performance. Furthermore, annotation inconsistencies
among dermatologists contribute to unreliable training data, making it difficult
for models to generalize [21, 13, 26]. A promising direction for addressing these
challenges is data attribution, which aims to identify training samples that neg-
atively impact model generalization. Koh et al. [11] and Yeh et al. [27] extended
the concept of influence functions from robust statistics to deep learning. Re-
searchers have explored feature-level influence by estimating how specific input
features impact individual predictions [24, 14, 22], as well as training sample in-
fluence by assessing how data points contribute to overall model performance
[16, 15]. Gradient-tracing methods, such as TracIn [20] and its practical adapta-
tion TracInCP, estimate training sample influence by tracking gradient updates
across minibatches and checkpoints. While [4], a closely related work, leverages
Hessians to measure influence in the absence of a sample, TracInCP replays
training via stored checkpoints to approximate its effect on test predictions. To
emphasize on model explainability in medical imaging, some researchers have
leveraged influence functions to analyze and interpret decision-making [7]. Re-
cent work in medical imaging has leveraged model pruning to improve perfor-
mance and reduce computation [1, 6]. The Dynamic Average Dice score by He et
al. [5] on the other hand, focuses on data pruning which dynamically quantifies
the importance of each training sample by assessing its contribution to the Dice
coefficient, allowing a score guided identification and removal of non-informative
training samples. To the best of our knowledge, such score-based data pruning
methods have been less explored in medical imaging.

In this study, we introduce GRASP-PsONet, a gradient-tracing based influ-



GRASP-PsONet 3

ence estimation method for efficient data pruning in PsO severity classification.
Given the challenge that a training image may be detrimental to one validation
instance yet beneficial to another, GRASP-PsONet optimizes data selection. Our
key contributions are as follows:

– GRASP-PsONet is built on an existing weakly supervised multi-instance
learning (MIL) framework, provides an end-to-end solution which eliminates
extensive pre-processing (e.g., bounding boxes, region-specific models) while
remaining resilient to spurious correlations and annotation inconsistencies.
Using gradient tracing, our method enhances model interpretability and gen-
eralizability by identifying and removing influential training samples that
contribute to misclassifications in the validation set. Specifically, we com-
pute influence scores from misclassified validation examples and systemati-
cally prune 2.8%-13.3% of the training dataset, improving overall robustness.

– We use self-influence scores to identify potential mislabeled examples [20].
Self-influence quantifies how removing a training example affects its own
prediction, with high scores indicating mislabeled or atypical samples. We
rank-order training images based on self-influence and demonstrate that this
method effectively detects annotation inconsistencies. When applied to a
subset rated by two dermatologists, reviewing only the top 30% of ranked
data correctly identified 90.3% of inter-observer disagreements.

– Using data attribution based method boosts performance on the multi-class
PsO classification task by improving AUC for both readers by approximately
5% and 10% for ConvNeXT and ViT-based encoders, respectively.

2 Methodology

2.1 Problem Setup

The data was divided into a training set, Strain = {(xtrainpv
1 , ytrainpv

1 ), . . . ,

(xtrainpv
N , ytrainpv

N )}, with N = 46 images per patient visit (pv) and 610 unique
patient visits. The validation set was Sval = {(xvalpv

1 , yvalpv
1 ), . . . , (xvalpv

N , yvalpv
N )},

where each label y denotes PsO severity: mild (PASI : 0− 5), moderate (PASI :
5− 10), or severe (PASI > 10) based on all 46 images per visit. Influence is the
reduction in loss on a validation example z′ ∈ Sval caused by using a training
example z ∈ Strain. The aim is to find influential training images that lead
to validation misclassifications in an existing MIL model and retrain it after
removing these images. The final model is chosen based on the best validation
AUC. Training labels come from Reader 1, while evaluation uses scores from
two readers. For each misclassified validation visit, the image with the highest
attention score among the 46 is chosen, and gradients are traced to remove
the top k influential training images, xrem ∈ Strain. After removing influential
images, N becomes variable as it decreases with the number of removed images.
‘Baseline’ refers to the MIL models without data attribution for both ConvNeXT
and ViT encoders.
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Fig. 1. The overall MIL framework for multiclass PsO severity classification, including
data attribution. PASI classification thresholds are mild (0–5): class 0, moderate (5–10):
class 1, and severe (>10): class 2.

2.2 Overall Architecture

Our architecture consists of a pre-trained encoder, an attention block, and a
multi-layer perceptron (MLP) for multi-class classification, as shown in Fig.1.
Given that our dataset includes body images captured by patients, we found
ImageNet [3] pre-trained encoders effective for transfer learning. We evaluated
encoder architectures such as ConvNeXT and Vision Transformer (ViT). Here
we describe the pre-trained encoder for multiclass PsO classification using Con-
vNeXT as we obtain best Baseline results using this encoder. The ConvNeXT
encoder employs convolutional and downsampling blocks, producing feature di-
mensions of RH/4×W/4×K , RH/8×W/8×2K , RH/16×W/16×4K , and RH/32×W/32×8K

for an input RGB image of size H ×W ×C where K is the number of channels.
The encoder output feature dimension is reshaped to RD×1 via an MLP where
D = 768. This is repeated N times, where N corresponds to the images per pv
(initially 46/pv). The resulting features are concatenated into a tensor of size
RN×D×1, input into the attention block, and the output is passed to a final MLP
to generate class probabilities for three classes.

2.3 Removing Influential Images

We compute the impact of individual training samples on validation predictions
by integrating gradient-based data attribution [20] as outlined in Algorithm 1,
which estimates influence scores by computing gradient similarity between train-
ing and validation examples. For each misclassified validation image, we rank
training samples based on their cumulative influence and remove the k most
influential ones, refining Strain. In the MIL model, we handle this by passing
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Algorithm 1 : Tracing Gradients in GRASP-PsONet for TracIn Score
with Adam
1: Input: Model F , validation point z′ ∈ Sval, training point z ∈ Strain, training

checkpoints {wt}Tt=1, mini-batches Bt for t = 1, 2, . . . , T , batch size b, Adam mo-
ments mt, vt, learning rate ηt, loss function L(w, z).

2: Output: TracIn attribution score TracIn(z′, z).
3: Initialize: TracIn(z′, z)← 0
4: for t = 1 to T do
5: if z ∈ Bt then
6: Compute gradients: ∇θL(wt, z

′) (w.r.t. z′) and ∇θL(wt, z) (w.r.t. z)
7: Update the TracIn score:

TracIn(z′, z)← TracIn(z′, z) + ηt ·
mt√
vt + ϵ

· ∇θL(wt, z
′) · ∇θL(wt, z)

8: end if
9: end for

10: Normalize by batch size: TracIn(z′, z)← 1
b
TracIn(z′, z)

11: return TracIn(z′, z)

a binary vector indicating image presence, which is multiplied with the atten-
tion block to mask absent images. The influence of a training sample z on a
validation example z′ is quantified by the TracIn score, TracIn(z′, z), which ap-
proximates the loss reduction in z′ when z is utilized during training. Specifically,
L(wt+1, z

′) = L(wt, z
′) +∇L(wt, z

′) · (wt+1 − wt) +O(∥wt+1 − wt∥2). Ignoring
higher-order terms yields L(wt+1, z

′) = L(wt, z
′) +∇L(wt, z

′) · (wt+1 −wt). For
Adam optimizers, wt+1 − wt = −ηt

mt√
vt+ϵ , where mt and vt are the first and

second moments, ηt is the learning rate, and ϵ ensures numerical stability. Sub-
stituting, we get L(wt+1, z

′) − L(wt, z
′) = TracIn(z′, z) = ηt

mt√
vt+ϵ∇L(wt, z

′).
For mini-batches Bt with batch size b ≥ 1, the final computation of TracIn(z′, z)
is shown in Algorithm 1. This method identifies training images that drive mis-
classifications due to spurious correlations like lighting or labeling errors. Since
our labels are at the patient visit level, with each visit containing 46 images,
we track loss evolution on the most attended image per visit for misclassified
validation patients to find influential training examples. We are able to maintain
data versatility as we get a score for each image and selectively drop images
rather than removing all 46 images of a particular patient.

3 Experiments

3.1 Dataset and Settings

The dataset consisted of 344 screened patients (220 female, 124 male) who each
had 1–4 unique visits as part of the study protocol (baseline, weeks 2, 4, and
8), resulting in 844 total visits. Each visit comprised 46 images, leading to a
dataset of 38,824 total images. Data were split into training (70%; 610 visits,
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247 patients), validation (10%; 64 visits, 28 patients), and test (20%; 170 visits,
69 patients) sets. Skin tones were categorized using Fitzpatrick types: I (N = 60),
II (N = 163), III (N = 85), IV (N = 22), V (N = 12), and VI (N = 2). PASI
scores were assigned by one of seven dermatologists from a contracted research
organization (Reader 1), with inter-rater variability assessed by an independent
eighth rater (Reader 2).

3.2 Implementation Details

Our models were trained using PyTorch [19]. Images were resized to 224 × 224
and normalized with ImageNet statistics: mean (0.485, 0.456, 0.406) and std
(0.229, 0.224, 0.225). Training used the Adam optimizer [10] with α = 10−6,
weight decay 10−4, batch size 4, and 100 epochs on four NVIDIA A100 GPUs.
Weighted sampling addressed patient-level imbalanced PASI distributions.

3.3 Downstream Task and Evaluation Metrics

We implement a gradient tracking data attribution algorithm using pretrained
PsO classification checkpoints for the Baseline model and misclassified validation
examples. We identify the top-k influential training points causing misclassifi-
cations by computing influence scores using labels from Reader 1 and retrain
our MIL model after removing these k points, comparing its performance to the
Baseline. We control the number of removed images to avoid negative effects on
training. In our analysis, 9 out of 64 validation patient visits (each with 46 im-
ages) are misclassified. For each misclassified visit, we select the image with the
highest attention score to identify the top-100, 200, 300, 400, and 500 influential
training samples, representing 3-16% of the training dataset (900–4,500 images
out of 28,060). We observe an overlap in flagged training images across misclassi-
fied cases, leading to fewer removals than the calculated maximum. For example,
targeting the top-500 images for each misclassified validation image could remove
up to 4,500 images, but due to overlap, we remove only 3,734 unique images.
Thus, the actual removal ranges from 2.8% to 13.3% of the training set. This
controlled removal keeps the dataset large enough for effective training while
reducing harmful samples. We evaluate this on a multiclass PsO severity clas-
sification task, finding that removing influential points and retraining improves
AUC-ROC and Cohen’s Kappa across two readers.

3.4 Detecting Annotation Inconsistencies

Currently, we have 342 patient visits scored by two readers comprising the entire
test set (170 patient visits) and 172 visits from the train set. To assess our algo-
rithm’s ability to detect annotation inconsistencies, we conduct an experiment
by reconstructing our dataset to include the test data that were independently
scored by two readers making it have 780 patient visits. This is possible as we
do not want to evaluate further, rather just analyze if our method is able to
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Table 1. Performance comparison of ConvNeXT and ViT on the test set using Cohen’s
Kappa and AUC with different numbers of images removed from the training set.

Encoder k-value % Training Images Removed Reader 1 Reader 2
Cohen’s Kappa AUC Cohen’s Kappa AUC

ConvNeXT

Baseline 0.0% (0/28,060) 0.53 0.85 0.56 0.86
Top 100 removed 2.8% (794/28,060) 0.52 0.88 0.45 0.86
Top 200 removed 5.6% (1,576/28,060) 0.54 0.88 0.45 0.87
Top 300 removed 8.2% (2,292/28,060) 0.62 0.90 0.54 0.89
Top 400 removed 10.8% (3,019/28,060) 0.49 0.85 0.46 0.85
Top 500 removed 13.3% (3,734/28060) 0.42 0.83 0.38 0.80

ViT

Baseline 0.0% (0/28,060) 0.37 0.72 0.39 0.72
Top 100 removed 2.8% (794/28,060) 0.41 0.75 0.39 0.75
Top 300 removed 8.2% (2,292/28,060) 0.44 0.81 0.43 0.78
Top 500 removed 13.3% (3,734/28,060) 0.61 0.89 0.52 0.84

flag images with annotation inconsistencies. Following prior work [20], we uti-
lize self-influence scores, which quantify a training sample’s influence on its own
loss. As computing self-influence scores is computationally heavy, out of these
342 doubly rated patient visits, we pick 100 patient visits at random but main-
tain the ratio of same label:different label to approximately 84:16 which is the
same as that of the doubly rated dataset. For each of these 100 patient visits,
we compute a 46 × 46 self-influence matrix and assign the maximum diagonal
value as the self-influence score for that visit. Higher self-influence scores are
expected to indicate potential mislabeling, enabling systematic identification of
annotation discrepancies.

4 Results

In this section, we present the quantitative results for the PsO severity clas-
sification task, and highlight the efficacy of our approach in addressing poor
annotations. We report the values of micro-average AUC and linearly weighted
Cohen’s Kappa after removing images from the training data as summarized in
1. The most favorable outcomes were obtained by removing the top 300 images
from the training set per validation misclassification for multi-class severity clas-
sification using ConvNeXT encoders. Validation AUROC can be used to decide
how many images to remove. Removing the top 300 most “harmful” samples per
misclassified patient visit yielded the highest validation AUROC of 89.2% with
ConvNeXT, versus 81.4% (top 100), 82.6% (200), 78.7% (400), and 76.6% (500).
This trend aligns with test performance in Table 1. We show a few additional
experiments on the ViT backbone where removing top 500 images performs
the best. Fig 2 displays the confusion matrices for two independent raters on a
held-out test set, comparing baseline performance with GRASP-PsONet after
removing the top 300 images from training per validation misclassified patient
using a ConvNeXT based encoder. This approach significantly improves per-
formance, achieving AUC-ROC scores of 88.8% and 90.2% for the two raters.
Performance analysis on subgroups, such as skin tone, show that on the test set
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our framework achieved AUCs of 90.5% for FST I–III (6624 images) and 88.0%
for FST IV–VI (1196 images), compared to baseline AUCs of 84.7% and 87.6%.
Type V showed the lowest performance due to limited data, while Types I, IV,
and VI exceeded 90%.

Fig. 2. Confusion matrices for the Baseline and our method on the test set after remov-
ing 300 training images per validation misclassification using a ConvNeXT encoder.

Fig. 3. Left: Proportion of correctly identified mislabeled samples using a rank-ordered
list of self-influence scores. Right: Example of Grad-CAM maps on training images
with inter-rater discrepancies where the model misclassified the label.

A key aspect of our study involves leveraging self-influence scores to correctly
identify inter-rater discrepancies within the training dataset. Fig 3 presents a
performance curve illustrating the effectiveness of this approach. The x-axis rep-
resents the fraction of the training dataset inspected, while the y-axis indicates
the cumulative proportion of mislabeled samples identified. The solid blue line
demonstrates that by reviewing only the top 30% of ranked samples, we success-
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fully identify over 90% of the mislabeled cases. This result highlights the advan-
tage of self-influence scores in prioritizing label verification efforts, offering an
automated strategy for dataset quality checks. We also show heatmaps on some
flagged training images. Interestingly, for high-influence images, GRAD-CAM re-
veals that the model is focusing on incorrect/irrelevant regions, suggesting that
these images are problematic and affect training due to spurious correlations.

5 Conclusion and Future Work

In this work, we introduced a novel framework for PsO severity classification
that leverages score-based influence functions to refine training data. By trac-
ing gradients from the optimization process, we identify and remove the most
influential training images using misclassified images from validation data to
improve performance and generalizability. We also demonstrate the capacity of
this method to specifically flag images which have discrepancies in annotations.
In the future, instead of removing such problematic images, we can send them
for re-scoring or quality check, thereby alleviating the need for complete dataset
checking and re-scoring.
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