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Abstract. Predicting individualized perinatal brain development is cru-
cial for understanding personalized neurodevelopmental trajectories, how-
ever, remains challenging due to limited longitudinal data. While popu-
lation based atlases model generic trends, they fail to capture subject-
specific growth patterns. In this work, we propose a novel approach lever-
aging Implicit Neural Representations (INRs) to predict individualized
brain growth over multiple weeks. Our method learns from a limited
dataset of less than 100 paired fetal and neonatal subjects, sampled from
the developing Human Connectome Project. The trained model demon-
strates accurate personalized future and past trajectory predictions from
a single calibration scan. By incorporating conditional external factors
such as birth age or birth weight, our model further allows the simu-
lation of neurodevelopment under varying conditions. We evaluate our
method against established perinatal brain atlases, demonstrating higher
prediction accuracy and fidelity up to 20 weeks. Finally, we explore the
method’s ability to reveal subject-specific cortical folding patterns un-
der varying factors like birth weight, further advocating its potential for
personalized neurodevelopmental analysis.
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1 Introduction

Longitudinal brain analysis is crucial to understanding intricate growth pat-
terns and precursors of abnormal neurodevelopment. Fetal and neonatal brains
assume here a pivotal role, undergoing considerable morphological changes in
mere weeks. Normative brain models from MRI—known as atlases—are a com-
mon tool to analyze neurodevelopment|3]. These atlases are constructed from
large cohorts of subjects and registered to a reference space, achieving a general
representation of the brain. To better capture the morphological changes of the
perinatal brain over time, atlases for multiple time points, typically every week,
are constructed |13} 12 |8, [21} [22]. These population-based atlases are designed
to be as generic as possible, keeping bias to individual brains to a minimum.
With recently large published datasets, e.g., the developing Human Connec-
tome Project (dHCP) dataset |10} |17], generating unbiased population-based



2 M. Dannecker et al.

atlases for the developing brain has become feasible. These atlases, however, fall
short when applied to predict individual rather than average brain development.
Especially for perinatal brains, morphology can vary drastically between indi-
viduals. So far, only few methods exist that take into account subject-specific
morphology to predict individualized future growth patterns of the perinatal
brain |29, [18] [30]. Another shortcoming of established population-based atlases
is their inflexibility to external factors that influence brain development, for ex-
ample, birth age or weight, both known to have strong confounding factors of
diminished cortical folding and impaired brain development |2} |7} |13] |26].

Contribution In this work, we present the first atlas to predict individualized
growth patterns for fetal and neonatal brains. We demonstrate that our method
faithfully forecasts subject-specific development up to 20 weeks into the future
or past and operates seamlessly across the event of birth. Integrated conditioning
on external factors (e.g., birth age, birth weight) enables simulations of custom
what-if scenarios. Trained on a limited longitudinal cohort (100 subjects, one
follow-up each), our model generates accurate individualized trajectories from a
single calibration scan, outperforming population-based atlases.
To summarize, we:

— Predict individualized growth, providing the first atlas delivering subject-

specific fetal and neonatal brain trajectories up to +20 weeks.

Span the birth event, bridging prenatal and postnatal domains via shared

latent codes that unify fetal and neonatal scans.

Condition on external factors, using learnable tokens for scan age, birth age,

and weight to simulate what-if developmental scenarios.

— Operate data-efficiently, achieving high-accuracy predictions with only one
follow-up scan per subject on a cohort of 100 subjects.

2 Related Work

Population Based Atlases First normative perinatal brain models from MRI
leveraged group-wise affine registration to align a given population to a com-
mon reference space. Notable examples include the fetal atlas by Habas et al.
[9] and the pre-term neonatal atlas by Kuklisova-Murgasova et al. [12]. Both
are spatio-temporal atlases, capturing anatomy for pre-defined time intervals,
typically representing the generic brain for each week from 20 weeks gestational
age (GA) to 46 weeks post-menstrual-age (PMA). Follow up work from Serag et
al. [21] integrated non-rigid free-form deformations [19] and age-adaptive kernels
to balance subject contributions producing sharper atlases with enhanced tissue
delineations. Makropoulos et al. [13] and Gholipour et al. [8] followed by devel-
oping spatio-temporal atlases from large populations including 420 neonates and
81 fetuses, respectively. The atlases offer brain tissue segmentation at different
granularities, from broad cortical and subcortical divisions |21] to detailed maps
with over 100 regions [8]. However, these traditional population-based atlases are
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Fig. 1. Individualized Atlas. Paired sessions share a common latent code to encode
subject-specific features. Shared condition tokens, sampled and interpolated based on
subject conditions (e.g., scan- and birth age), are added to the latent code to modulate
the INR decoder, which predicts intensities and tissue labels. During inference, unseen
holdout sessions are predicted in a single forward pass via the same process.

limited by their inability to account for external factors known to influence brain
development, e.g., birth age or weight |7, |2, 26|, and their, by design, averaged
representation, restricting their applicability and use to individual subjects.

Longitudinal Prediction Methods Longitudinal brain prediction has been
explored in various contexts, including adult and infant brains. Sivera et al. [24]
introduced a deformation-based framework for Alzheimer’s, conditioned on age
and disease state, however, limited to small morphological changes over years.
Yoon et al. [28] employed a diffusion model for cardiac and adult brain imaging,
using large datasets and predefined age templates for training. Yuan et al. [29]
and Rekik et al. [18] modeled infant brain development from 3 to 24 months.
Zhang et al. [30] predicted fetal brain growth, conditioned on an initial scan
and predicting the subsequent week. Besides the limited prediction horizon, the
method lacks evaluation on ground-truth, excludes neonatal brains, and does
not incorporate external developmental factors.

To the best of our knowledge, this work presents the first comprehensive and
individualized, image-based atlas for perinatal brain development. We propose a
condition-aware approach that predicts individualized growth trajectories over
time spans up to 20 weeks, bridging the gap between population atlases and
personalized modeling.

3 Methodology

Derived from [4], our individual atlas model, outlined in Fig. [I} employs three
essential building blocks: latent code, condition tokens, and INR decoder. In the
following, we outline each of these blocks in detail.
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3.1 Architecture

Latent Code For each of N training subjects, we employ a latent code {zj}f»ij,
tasked to encode subject specific properties during training. To enforce the model
to learn subject specific but not session specific features, a subject’s sessions (in

this work two) share the same latent code initialized as z ~ N(0,1072) [16].

Condition Tokens In addition to the latent codes, we introduce learnable
condition tokens {t$}M, with ¢ € {0,...,C}, where C denotes the number of
conditions and M the number of tokens discretizing each condition domain. For
instance, the scan age of perinatal brain data typically spans 20 to 45 weeks
postmenstrual age (PMA), which we represent with M = 5 tokens. The tokens
are shared across all subjects. During training, when reconstructing a subject j
with a given condition value (e.g., scan age of 26 weeks), the corresponding token
value is computed via linear interpolation between its two neighboring tokens:

t°(v) = wit§ + wotf,;, where w; = M, wy = T

Vi1 — U Vi1 — Vi

Here, v is the given condition value and v;, v; 11 are the predefined values associ-
ated with tokens t§ and tf, ,, respectively. Next, the interpolated token vectors
t9(v0),...,t%(vY) are orthogonalized via the Gram-Schmidt process to ensure
independent contributions of each condition, preventing redundancy and enhanc-
ing disentanglement in the representation. Finally, the latent representation z;
of subject j is attuned by adding the sum of the orthogonalized tokens:

c
Zi=z+ ) #° (1)
c=0
The new code Z; modulates the INR decoder following the approach of |4, |6} |15].

Modulated INR The INR architecture is identical to [4] that follows the mod-
ulation approach of |6} [15]. The INR acts as decoder of latent code and tokens
and its weights are shared across all subjects. We transform the modulation code
z; € RP into scale (¢p € RY) and shift (¢» € RL) parameters via a linear modu-

lation layer () = Pz -+ u where P € R*:%2 and p € R*F. Each modulation

layer then outputs sin (wg - ¢ - (Wax + b) 4 1), where W € REXE and b € RF
are the layer weights and biases of the MLP, and wy is a scaling factor to model
high-frequency signals [23]. Note, the weights of the INR as well as P, u, W,
and b are shared across all training data.

3.2 Training and Inference

N

The model is trained by optimizing the latent codes {z;};Z,, the condition tokens

{t¢}M | and the network parameters 6. Given N training subjects, we maximize
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the joint log posterior over all subjects by minimizing the reconstruction loss for
both image intensity and segmentation:

N

arg min Z Z [EMSE (f;mg(m,ij),fw) +LcE (fgeg(m,ij),éz)].

67{zj }é\]:lﬂ{t;j; ,f\ilﬂce‘{ownac} j=lzeX;
(2)

Here, 2z; is the modulated latent code for subject j, computed as in Eq. [I} The
functions fgmg and f;“? denote the INR decoder heads for image reconstruction
and segmentation, respectively, with I, and C,, being the ground-truth intensity
and tissue label of voxel € X;. The loss functions £;sg and L¢ g represent the
mean squared error and cross-entropy loss, ensuring accurate intensity and tissue
label predictions. The optimization updates the network parameters 6, latent
codes {2;}}_;, and the shared condition tokens {#¢,#¢,,}. Inference is done with
customized or target condition data to sample the corresponding tokens which
are added to the subject’s optimized latent code. The customized or target brain
is reconstructed by the INR decoder via a forward pass.

4 Experimental Setup

4.1 Dataset

We use the dHCP (developing Human Connectome Project) dataset for our stud-
ies. Imaging includes T2-weighted sequences, following the protocol described in
|14} |17]. Most scans include quality-controlled, automatically segmented tissue
maps of brain regions [14]. The dataset contains almost 300 fetal and over 800
neonatal scans. For this work we required paired data, i.e., subjects with at least
two scans of different time points. dHCP contains 22 subjects with > 2 fetal scans
per subject, 79 subjects with a fetal- and a follow-up neonatal scan, and 99 sub-
jects with > 2 neonatal scans. Discarding subjects with missing segmentation
files or radiology score > 3, indicating "Incidental findings with possible/likely
clinical significance [...]" left us with 70 subjects for training, 15 subjects for
validation, and 30, subjects for testing, totaling 115 subjects with 230 scans.

4.2 Pre-Processing and Hyperparameters

All subjects were rigidly aligned to the same reference space, masked, skull-
stripped, and brain intensities normalized to [0,1]. Due to resolution-agnostics
of the INR, we do not resample the scans to the same resolution, preserving
image details by avoiding interpolation. All experiments used the same set of
hyperparameters optimized on the validation set. We configured the INR with 9
hidden layers, 1024 units each, and modulation applied to layers 1, 3, 5, 7, and
9. The latent code and token dimension was set to 128. Number of tokens was
set to M =5 as a larger number of tokens promoted overfitting. Learning rates
were set to [, = 5e°. Batch size, i.e., number of coordinates, was set to 25 000.
We trained for 10 epochs requiring ~4 hours on a NVIDIA A6000 GPU.
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4.3 Baselines

1. BD-Atlas (fetal & neonatal) |21} [13]: 4D fetal and neonatal brain at-
las built from T2w MRI of 80 fetuses and 420 neonates, respectively. Tis-
sue probability maps include cerebrospinal fluid (CSF), cortical gray mat-
ter (cGM), lateral ventricles (LV), and brain hemispheres (BH). Both BD-
Atlases are publicly available at | brain-development.org,.

2. Deepali |20]: An open-source GPU-accelerated registration library which
we used to construct fetal and neonatal atlases from the dHCP data, using
a group-wise registration approach following [25].

4.4 Training and Evaluation Setup

Additionally to the 70 training subjects, we included one session of each of the
30 test subjects, referred to as known sessions, for training. After training, the
model predicts the 30 unseen holdout-sessions, referred to as target sessions, via
a single forward pass. The prediction was rigidly aligned to the ground truth [1].
Predictions with the atlas baselines were performed using two methods:

— M1: An atlas corresponding to the same developmental stage (fetal or neona-
tal) as the target brain and of similar scan age was rigidly aligned and com-
pared to the target brain, i.e., the ground truth.

— M2: The scan from the known session was deformed to match the atlas of the
target scan age and then rigidly aligned and compared to the target brain.

5 Experiments and Results

5.1 Longitudinal Brain Prediction

We evaluate brain prediction accuracy using the 30 holdout sessions of 30 test
subjects. For 15 subjects the model has seen the first session and is tasked with
predicting the follow-up session (prediction of future states). For the remaining
15 subjects, the model has seen the follow-up session and predicts the first session
(prediction of past states). Test subjects include fetal-fetal, fetal-neonate, and
neonate-neonate sessions. We evaluate image similarity via PSNR and SSIM, and
segmentation accuracy via dice score (DSC) of cGM and mean dice score (DSC)
over CSF, cGM, LV, and BH. Finally, we compare the predicted brain volume to
the ground-truth brain volume VOL 4. Quantitative (Table [1)) and qualitative
results (Fig. [2) underscore the shortcomings of population atlases in represent-
ing the individual perinatal brain development. While our method’s predictions
adequately capture subject specific morphological characteristics, baselines rep-
resent average brain anatomy while ignoring individual mophology.
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Fig. 2. Qualitative results for predicting past time points (left) and future time points
(right). While the baselines can only represent average brain anatomy, our method
adequately captures individual anatomical characteristics, even for prediction from
fetal to neonatal state or vice versa.

Table 1. Quantitative evaluation between predicted and ground-truth brains. Metrics
include PSNR, SSIM, Dice score for cortical gray matter (D.SC ¢GM), mean Dice score
(DSC) over all labels, and brain volume difference (VOLA) in em®. MEANLsTp over
30 subjects. Best sores in bold.

Method PSNR SSIM DSC cGM DSC VOLA (em?)
BD-Atlas M1 | 18.57+1.04 0.34+0.20 0.48+0.07 0.55+0.05 3024101
BD-Atlas M2 17.64+1.25 0.6240.03 0.48+0.09 0.54+0.08 171463
Deepali M1 17.0141.08 0.69+0.08 0.54+0.00 0.58+0.09 51408
Deepali M2 17.3941.56 0.6110.06 0.45+0.10 0.5210.07 176148
Ours 20.66%, 5 | 0.75%00s | 0.62%005 | 0.65%0.05 4519

*Value significantly better than the second best (p < 0.05, paired t-test).

5.2 Trajectory Prediction

Provided with a subject’s conditional data and a single MRI scan, our model
predicts the future and past growth trajectory over several weeks via extrapo-
lation of the condition token domain—including scan age and birth age—in the
corresponding direction. Fig. [3] illustrates the predicted growth trajectory of a
subject. Note how the model realistically transitions from fetal brain appearance
to neonatal, bridging the event of birth faithfully.

We can further predict trajectories conditioning on other secondary proper-
ties, for example the subject’s birth weight z-score, i.e., the factor of standard-
deviations from the mean weight. Several work in literature have found cortical
folding, cortical surface area and gyrification index, to be lower for neonates of
lower birth weight z-scores . As depicted in Fig. |4} this correlation is
captured by our model, with decreased cortical folding if conditioned on lower
birth weight.
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Fig. 3. Growth trajectory of the individual brain with CSF, and ¢cGM probability
maps. Red line indicates subject’s time of birth. Left column shows the known time
point, right column shows the target time point, i.e., the ground truth.
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Fig. 4. Simulated individual brain development, conditioned on age (rows, weeks 37 to
40) and birth weight (columns, z-scores -1.5 to 0). b) Pial surface reconstructions, via
|14} 27] for the brain of 40 weeks conditioned on birth weight. Top to bottom shows
increasing birth weight from -1.4 z-scores to 0 z-scores, i.e., mean birth weight.

6 Conclusion

We presented the first approach for predicting individualized perinatal brain
growth using implicit neural representations. Unlike traditional population-based
atlases modeling generic trends, our method captures subject-specific growth
trajectories with high accuracy requiring only a single calibration scan for pre-
dictions. This makes it highly practical in clinical and research settings where
longitudinal imaging is scarce. Beyond age progression, our approach allows con-
ditional predictions, incorporating factors such as birth age or birth weight. This
enables simulations of neurodevelopment under different conditions, offering in-
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sights into how external factors influence individual brain development, relevant,
among others, for studying preterm birth effects.

In this work we have only predicted future or past brain development of
subjects included in training, limiting the methods applicability. Future work
will explore test-time optimization of new unseen subjects for prediction, fol-
lowing established approaches in literature 16| 4]. Finally, integrating implicit
cortical surface representation instead of relying on external tools could further
strengthen the method.
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