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Abstract. Accurate detection of tooth landmarks is crucial for computer-
aided orthodontic treatment. Previous methods often employ segmenta-
tion to isolate individual teeth, but rely heavily on segmentation accu-
racy and require annotated data. In this paper, we introduce a two-stage
framework for tooth localization and landmark detection, eliminating
the need for segmentation based on mesh deep learning. First, we de-
fine the fuzzy tooth regions based on landmark positions. Binary masks
are generated for the tooth regions located from the original jaw mesh.
By combining local features of individual teeth with the global features
of the jaw model, our method predicts multiple heatmaps and the cor-
responding probabilities of potential landmarks for each tooth. Finally,
we design a bipartite matching loss for both tooth localization and land-
mark detection to align the prediction set with the ground truth, thereby
facilitating end-to-end inference throughout the entire process. Experi-
mental results on the Teeth3DS+ dataset demonstrate that our method
effectively detects a variable number of landmarks. Furthermore, it sig-
nificantly outperforms existing baseline methods, exhibiting robust gen-
eralization and superior performance.
(The code will be released at https://github.com/sikingbo/ToothLDNet.)

Keywords: Tooth Landmark Detection · Tooth Localization · Two-
stage · End-to-End · Multiple Heatmaps.

1 Introduction

In digital orthodontics, the automatic and accurate detection of tooth land-
marks in 3D jaw models is crucial to helping orthodontists perform dental eval-
uations and plan treatments [20,26]. Traditionally, this process required man-
ual segmentation and landmark marking by clinicians, which is time-consuming
and laborious. The introduction of deep learning [3,6,12,14,10,17,24] has signif-
icantly advanced the development of semiautomatic and fully automatic meth-
ods for landmark detection. However, accurately detecting tooth landmarks
remains challenging due to the complex geometry of jaw model surfaces, the
differences among teeth, and the occasional presence of abnormal or missing
teeth in certain patients. Consequently, many existing methods [22,25] employ

https://github.com/sikingbo/ToothLDNet
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Fig. 1. The overall pipeline of ToothLDNet. Top: tooth localization performs multiple
binary classification tasks, each corresponding to a tooth, and filters the ‘background’
(BG) masks. Bottom: Our method predicts multiple heatmaps with corresponding
probabilities, filtering out the ‘background’ (BG) heatmaps.

tooth segmentation [8,11,27] as a preprocessing step for precise landmark detec-
tion.However, this approach necessitates segmentation labels for model training,
which is typically a laborious and time-consuming process. Therefore, we inves-
tigate whether alternative strategies can achieve accurate landmark detection
without the need for segmentation labels. Moreover, most existing landmark
detection methods [25] generate a correspondence heatmap for each landmark
within a segmented tooth. This approach limits the model’s output to predict-
ing a fixed number of landmarks, thereby restricting its generalizability. Some
methods [22] attempt to extract a variable number of landmarks by predicting
a shared heatmap, but they often rely on post-processing techniques such as
clustering [16]. Furthermore, these approaches tend to analyze individual teeth
in isolation, thereby neglecting the global features of the entire jaw model.

To tackle these challenges, we introduce a two-stage framework, ToothLDNet,
for tooth localization and landmark detection. ToothLDNet provides an end-to-
end solution that can be applied directly to jaw models without segmentation.
Initially, we observe that tooth landmarks can roughly indicate the positions
of teeth. Based on these landmark locations, we calculate the bounding box to
generate its localization label for each tooth. The first stage features a tooth
localization network that estimates binary masks and probabilities for potential
teeth, and extracts global features of jaw models for the next stage. The second
stage landmark detection network extracts local features from individual teeth
and combines them with global features. The fused features are then decoded
to generate multiple heatmaps and probabilities for potential landmarks. We
employ bipartite matching loss [2,7,13,18] for tooth localization and landmark
detection networks. By comparing the predicted sets with the ground truth,
these loss functions ensure that ‘background’ predictions are filtered out during
inference, allowing the model to predict a variable number of targets end-to-end.

In summary, our contributions are as follows:
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Fig. 2. The network architecture of ToothLDNet.

– We introduce ToothLDNet, a two-stage framework for accurately and effi-
ciently detecting 3D tooth landmarks without relying on segmentation labels.

– We introduce a transformer-based network that extracts local geometric fea-
tures and employs self-attention to capture global sequence features of teeth
along the dental arch curve.

– We validated our method on the Teeth3DS+ dataset, achieving robust per-
formance across a range of challenging dental cases and demonstrating ex-
cellent results.

2 Method

In this section, we provide a detailed overview of our method.ToothLDNet con-
sists of two primary stages: tooth localization and landmark detection, as il-
lustrated in Figure 2. We adopt a similar network architecture for both tooth
localization and landmark detection. In addition to predicting the masks or
heatmaps that highlight the locations of the teeth or landmarks, the network
also generates corresponding probabilities to indicate the presence of each tooth
or landmark. To ensure end-to-end inference, we design the bipartite matching
loss to train both tooth localization and landmark detection networks.

2.1 Data Processing

Given a jaw model, we first determine the approximate region of each tooth
based on the ground truth landmarks. As shown in Figure 3, a bounding box for
tooth is generated using the Mesial, Distal, Inner, Outer, and Cusp points, which
is then used to create a binary mask. Next, based on these masks, we calculate
the offsets o from all face centroids to the corresponding tooth centroid, while
setting the offsets for gingiva faces to zero vectors [28]. Furthermore, we crop
tooth regions and calculate the geodesic distances from the face centroids to the
landmarks. Finally, a Gaussian kernel is applied to generate the ground truth
heatmaps [7].
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Fig. 3. The ground truth mask based on tooth landmarks. For these landmarks: green
and red represent the Distal and Mesial points, yellow and cyan denote the Inner and
Outer points, and magenta and blue indicate the Facial Axis and Cusp points.

2.2 Network Detail

Tooth Localization Existing high-accuracy 3D tooth landmark detection meth-
ods typically rely on pre-segmentation to crop individual teeth from the 3D jaw
model, simplifying the landmark detection task. This pipeline necessitates seg-
mentation annotations. However, we found that high-accuracy tooth segmenta-
tion does not significantly enhance landmark detection performance, prompting
us to question whether segmentation is truly necessary as a preprocessing step for
landmark detection on jaw models. In light of this, we observe that the landmark
locations on the jaw model are sufficient to identify the approximate regions of
each tooth. Therefore, we generate the ground truth for the tooth localization
task based on landmarks. This approach only requires ensuring a sufficient recall
rate for tooth localization in the jaw model, making it less sensitive to boundary
issues.

Specifically, the high-resolution original jaw model is initially simplified us-
ing a mesh simplification algorithm [5], decreasing the number of faces from
approximately 100,000 to around 10,000. From the simplified model with NJ

faces, we extract face-wise feature vectors XJ ∈ RNJ×15 as input for the tooth
localization network. XJ include face centroid coordinates, normals, and vectors
from three vertices to the centroid. We then utilize the feature extractor from
TeethGNN [28] to extract geometric features FJ ∈ RNJ×D. Following this, we
design an offset decoder branch to predict face-wise offsets ô. The offset branch
consists of two MLP layers and a Conv1D layer, and is supervised by the ground
truth offsets. Inspired by KeypointDETR [7], the query-wise decoder uses an
MLP to decode FJ into MJ -dimensional representation, which are then trans-
posed to obtain the mask features Fm ∈ RMJ×NJ , where MJ is the preset number
of queries for tooth localization. The mask features Fm are subsequently passed
through the mask and probability heads to generate potential tooth mask and
the corresponding probability. During inference, ‘background’ predictions are fil-
tered based on probabilities, enabling end-to-end tooth localization. Ultimately,
the results are projected back onto the original mesh using k-NN (k = 1), and
individual tooth regions are cropped from the jaw model.

Global Feature Encoder Different types of teeth vary significantly in scale
and shape, which results in substantial differences in the positions and local
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geometric features of their landmarks. However, our pipeline does not provide
semantic labels about the teeth. Given this consideration, and since the teeth
are arranged along the dental arch curve, we use the self-attention mechanism to
encode each tooth’s potential semantic information based on its relative position
along the arch, while also capturing its global features within the jaw model.

Given the face-wise geometric features FJ , centroid coordinates, and pre-
dicted offsets, we first add the centroids and offsets to obtain the shifted points
P . We then apply DBSCAN [4] to P to identify tooth clusters, resulting in sets of
tooth cluster features {F (i)

J }T and corresponding cluster points {P (i)}T , where
T represents the number of tooth clusters. Based on these sets, we compute
the centroid coordinates CS ∈ RT×3 and the max-pooled features FS ∈ RT×D

for tooth clusters. Finally, the tooth cluster features FS and centroid coordi-
nates CS are fed into the self-attention block to encode the global features
FG = {f (i)

G }T ∈ RT×D:

FG = Softmax

(
([FS +MLP(CS)]WQ) (FSWK)

⊤
√
Dk

)
[FS +MLP(CS)]WV , (1)

where WQ,WK , WV are weight matrices, and Dk is the dimensionality of the keys
in self-attention. The position encoding is derived from CS through an MLP.

Landmarks Detection Similar to the tooth localization network, given the i-th
tooth region cropped from the jaw model, we first use the TeethGNN encoder [28]
to extract geometric features FL ∈ RNL×D from input features XL ∈ RNL×15 of
this tooth region, where NL represents the number of faces. Since FL contains
only local information within tooth region, it is concatenated with the global
features f

(i)
G , resulting in the fused heatmap features:

Fh = FL ⊕ f
(i)
G , (2)

where global features f
(i)
G originate from the tooth cluster with the highest IoU

in the i-th tooth region. Next, we decode the heatmap features Fh into ML di-
mension using two MLP layers, followed by transposing to obtain Fh ∈ RML×NL

, where ML is the preset number of queries for tooth landmark detection. Fh

is then passed through separate heads for heatmap and probability prediction,
generating both the heatmap and corresponding probability. During inference,
we filter out the ‘background’ heatmaps based on the predicted probabilities and
extract the landmarks with the highest heat values from the predicted heatmaps.

2.3 Loss Function

The overall loss consists of three parts: tooth localization loss LJ , landmark
detection loss LL, and offset loss LO:

L = LJ + LL + λoLO (3)
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LO =
1

NJ

∑
∥oi − ôi∥ (4)

where o and ô are ground truth and predicted offsets. LJ and LL are designed
as bipartite matching loss. The loss starts by constructing a cost matrix {ci,j} ∈
RN×M that defines the relationship between ground truth and prediction sets:

ci,j = λm ·
∑

∥mi − m̂j∥+ λp · (1− log p̂j) , (5)

where mi represents the i-th ground truth map, and m̂j signifies the j-th predic-
tion map, which means mask for tooth localization and heatmap for landmark
detection; p̂j denotes the corresponding probability of prediction map.

With the Hungarian algorithm [9], we determine the optimal bipartite match-
ing between prediction sets and ground truth. Only predictions that match the
ground truth can calculate map loss and probability loss, otherwise only proba-
bility loss is calculated. We use cross-entropy for probability loss and MSE loss
for predicted map loss. For tooth localization, ground truth pi of 0 or 1 indicates
whether the predicted mask matches the ground truth mask. For landmark detec-
tion, pi represents the corresponding landmark category. The bipartite matching
loss Lb is computed as follows:

Lb =

M∑
i=1

(
−λcepi log(p̂i) + λmse1{pi ̸=0}

1

N

∑
∥mi − m̂i∥2

)
. (6)

3 Experiment

3.1 Implementation Details and Dataset

All experiments are conducted on an RTX 2080Ti GPU. Both the tooth local-
ization network and the landmark detection network are trained for 50 epochs.
The learning rate is set at 0.001 for tooth localization and 0.0001 for landmark
detection. The number of queries, MJ and ML, are both preset to 50. In the data
preparation phase for heatmap generation, we set σ = 0.75. In the cost matrix,
λm and λp are assigned values of 1 and 100, respectively. For the loss function,
the coefficients λce and λmse are set to 1 and 5 for tooth localization, and 1
and 30 for landmark detection. Additionally, λO is set to 0.5. Additionally, We
conduct experiments on the publicly available large-scale benchmark dataset,
Teeth3DS+ [1],

3.2 Metrics

We evaluate the performance of 3D landmark detection by calculating the aver-
age precision (AP) and average recall (AR) across different types of landmarks.
Additionally, landmark localization accuracy is evaluated using Chamfer Dis-
tance (CD) between the predicted set and the ground truth set [7].
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Fig. 4. Qualitative comparison of a upper jaw model (case A), a lower jaw model (case
B), and a jaw model with the side view (case C). The red boxes highlight the landmark
positions where our method significantly outperforms the comparison methods.

Table 1. Results of AP(%), AR(%) and CD for landmark detection.

Cusp Facial Axis Inner&Ouuter Mesial&Distal All
AP AR AP AR AP AR AP AR CD

PointNet++ [15] 56.4 48.6 69.2 53.7 56.2 43.2 60.0 48.0 2.32
DGCNN [21] 68.3 56.2 69.6 54.4 57.5 45.1 69.6 56.8 1.82
Wei et al. [23] 69.5 53.1 70.4 55.5 66.5 55.5 69.3 55.7 1.53

KeypointDETR [7] 69.7 56.7 72.2 58.3 70.1 57.5 70.7 58.1 1.46
Ours 69.7 57.5 72.3 58.5 70.4 57.8 71.2 57.6 1.44

3.3 Results

To ensure a fair comparison, we consistently use our tooth localization network to
crop individual teeth from the jaw model, and then apply comparison methods to
extract landmarks from these cropped teeth. We compare ToothLDNet with two
point cloud feature extraction algorithms (DGCNN [21] and PointNet++ [15])
and two keypoint detection methods (KeypointDETR [7] and Wei et al. [23]).
In both feature extraction algorithms, the decoder outputs a heatmap for each
type of landmark, with cusp landmarks extracted through clustering within the
shared heatmap. For evaluation, we calculate the AP and AR for each landmark
at thresholds ranging from 0 to 3, with an interval of 0.1. The mean is then
computed across all thresholds. Additionally, we use CD to evaluate the perfor-
mance across all landmarks. The quantitative results are presented in Table 1,
where our method outperforms the comparison approaches in terms of accuracy,
recall, and localization. As shown in Figure 4, clustering-based post-processing
methods (DGCNN [21], PointNet++ [15], Wei et al. [23]) inevitably result in
extra or missing cusp landmarks. This is mainly due to the fact that clustering
methods rely heavily on prior knowledge for hyperparameter tuning.

3.4 Ablation Study

Effects of tooth localization. In our framework, tooth localization serves
as the foundation for landmark detection. We compare our method with two
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Table 2. Results of AP(%), AR(%) and CD for the variations of our method.

Cusp Facial Axis Inner&Ouuter Mesial&Distal All
AP AR AP AR AP AR AP AR CD

DGCNN [21] 67.0 55.6 62.3 48.3 64.2 51.7 69.6 57.0 1.58
TeethGNN [28] 68.8 55.7 63.4 49.8 66.3 52.6 70.5 57.5 1.50

PointNet++ Encoder [15] 57.3 49.3 70.1 54.2 63.4 54.7 60.5 48.8 2.22
DGCNN Encoder [21] 68.6 57.1 72.0 58.2 70.3 57.5 69.9 56.6 1.46
w/o Self-attention [19] 68.4 56.3 71.3 57.4 70.1 57.4 71.0 57.5 1.49
w/o Position Encoding 68.6 57.2 71.7 57.5 70.2 57.6 70.9 57.1 1.48

Ours 69.7 57.5 72.3 58.5 70.4 57.8 71.2 57.6 1.44

segmentation networks, DGCNN [21] and TeethGNN [28], as shown in the first
sub-table of Table 2. The experimental results indicate that our framework out-
performs tooth segmentation in landmark detection. This is primarily because
the fuzzy localization of the teeth allows for greater tolerance in landmark detec-
tion, while tooth segmentation requires higher boundary quality and may result
in incomplete tooth segmentations.

Effects of encoder. We use the TeethGNN [28] encoder, which consists of
static EdgeConv layers, to extract geometric features. To evaluate its effective-
ness, we compare it with the DGCNN [21] and PointNet++ [15] encoders. The
second sub-table shown in Table 2 confirms that the TeethGNN encoder achieves
superior performance in 3D tooth landmark detection.

Effects of self-attention module. The self-attention module is designed to
extract global features of the teeth from the jaw model. To evaluate its effec-
tiveness, we conduct experiments with and without the self-attention module.
Furthermore, positional encoding is essential in the self-attention mechanism as
it encodes the relative positions of teeth along the dental arch, embedding po-
tential semantic information. To assess its impact, we compare results with and
without positional encoding. As shown in the third sub-table of Table 2, the
results indicate that incorporating positional encoding within the self-attention
module significantly enhances the model’s ability to capture global dependencies
and refine sequential features, ultimately improving tooth landmark detection.

4 Conclusion

This paper introduces ToothLDNet, a framework comprising a tooth localiza-
tion network and a landmark detection network. The tooth localization network
crops the fuzzy regions of the teeth from the jaw model by predicting multi-
ple binary masks. The landmark detection network then identifies the landmark
positions. Both networks are trained using a bipartite matching loss. During end-
to-end inference, ‘background’ masks and landmarks are filtered based on the
corresponding predicted probabilities. Extensive experiments on the Teeth3DS+
dataset validate the efficiency and robustness of ToothLDNet.
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