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Abstract. Tunnel magnetoresistance (TMR) sensors have been recog-
nized as a cost-effective alternative for measuring magnetocardiography
(MCG) signals. However, their relatively high noise levels and suscep-
tibility to contamination limit their practical clinical applications. To
address these challenges, we propose a novel Multi-Level Gated U-Net
(MGU-Net) model specifically designed for denoising long sequential
MCG signals obtained from TMR sensors. The MGU-Net leverages the
U-Net architecture to learn hierarchical representations, integrated with
a novel Gated Linear Unit (GLU) module to capture the periodic pat-
tern of Q, R, and S wave complex (QRS complex) from MCG. This de-
sign enhances periodic cardiac signatures and suppresses irregular noise
components through adaptive gating mechanisms. We have developed a
TMR-based MCG system and collected both simulated and real MCG
data in a magnetically shielded environment. The results show that our
method improve signal-to-noise ratio (SNR) from -2.142 dB to 10.505
dB on the simulated MCG dataset and from 3.958 dB to 14.514 dB on
the real dataset, surpassing other state-of-the-art methods. Our model
successfully recovers subtle P-wave and T-wave features from the noisy
signals, illustrating a promising direction of using TMR-based systems
for potential practical clinical applications.

Keywords: Magnetocardiography (MCG) - Denoising - Tunnel Magne-
toresistance - Gated Linear Unit

1 Introduction

Magnetocardiography (MCG) has emerged as a critical non-invasive diagnostic
modality for analyzing cardiac electrical activity through its associated mag-
netic field patterns. Current MCG measurement technologies primarily rely on
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superconducting quantum interference devices (SQUIDs) [3] or optically pumped
magnetometers (OPMs)[1], each presenting distinct advantages and limitations.
SQUID systems demonstrate exceptional sensitivity with ultra-low noise lev-
els (~2-5 fT/v/Hz) [20][15] and superior low-frequency stability, making them
the gold standard for clinical MCG applications. However, their operational de-
pendence on liquid helium cooling systems and substantial equipment costs (
~ $1M) significantly limit widespread clinical adoption. OPM technology offers
comparable magnetic field resolution to SQUIDs while eliminating cryogenic
requirements, but introduces new challenges including complex optical system
configurations, precise alkali vapor cell management, and mandatory magnetic
shielding for optimal performance. These technical demands result in increased
maintenance complexity and operational costs that hinder practical implementa-
tion. In comparison, tunnel magnetoresistance (TMR) sensors with miniaturized
semiconductor designs have been considered as a cost-effective alternative tech-
nique for measuring MCG [6][14]. However, their relatively high noise (~2-200
pT/+v/Hz) [10][14] and susceptibility to noise contamination restrict their prac-
tical clinical applications.

To obtain clean magnetocardiography (MCGQG) signals using TMR sensors,
efforts have been made to use traditional methods such as digital filters [16],
AC modulation [22], and empirical mode decomposition (EMD) [14]|. However,
their effectiveness remains limited due to inherent constraints in handling non-
stationary noise and preserving subtle cardiac features. Recent advances in deep
learning have shown promise for electrocardiogram (ECG) denoising through
architectures like DeepFilter (a multipath convolutional network) [17], DeScoD-
ECG (diffusion-based model) [12], and Transformer-based TCDAE [2]|. However,
critical differences exist between ECG and MCG noise profiles: ECG denoising
primarily targets baseline drift (0.05-2Hz), electrode motion artifacts (0.1-10 Hz),
and muscle noise (5-500 Hz), whereas TMR-based MCG systems predominantly
exhibit 1/f electrical noise spanning 0.1-100 Hz with non-uniform spectral decay.
Current deep learning approaches achieve a significant improvement on ECG
datasets, but demonstrate suboptimal performance when applied to MCG signals
due to mismatched noise characteristics and sensor-specific artifacts.

In this paper, we proposed an Multi-Level Gated U-Net (MGU-Net) model
specifically for denoising MCG signals acquired by TMR sensors. We leverage
the U-Net architecture to perform multi-scale feature extraction, combined with
a novel gated linear unit (GLU) to enhance cardiac feature extraction and atten-
uate non-periodic noise by capitalizing on the periodicity inherent in the MCG
signal. The proposed model has an excellent performance on the task of denois-
ing TMR-based MCG signals, which opens up a promising direction of using
TMR-based systems for potential practical clinical applications.

2 Method

We start with an analysis of noise characteristics in MCG signals. Fig. 3(a) dis-
plays an episode of single-channel raw MCG signal acquired using the TMR, sen-
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sor. As shown, the noise exhibits random fluctuations with irregular amplitude
and frequency variations, indicative of white noise originating from electronic
systems (e.g., thermal agitation in sensor components) and 1/f noise inherent to
TMR sensors in low-frequency domains. Crucially, subtle cardiac features such
as P-waves and T-waves are mostly obscured by noise, with only the R-peak
component faintly observable in specific segments. This observation highlights
the challenge of extracting clean signals from a single cardiac cycle. To address
this, we construct datasets with samples of around 10-second length to provide
sufficient periodic information of Q, R, and S wave complex (QRS complex)
for the model to learn. For processing such long-sequence signals, our model
incorporates two critical design principles:

Hierarchical Feature Extraction: Direct processing of full-length MCG
sequences (typically containing ~10 cardiac cycles) poses significant computa-
tional challenges due to their extended duration and morphological complexity.
To address this, we implement a multi-scale feature extraction strategy that
progressively learns both localized waveform details and global contextual pat-
terns. Drawing inspiration from successful applications in high-resolution image
processing [21][13], our framework employs a U-Net architecture to facilitate
comprehensive feature learning across multiple temporal resolutions, ensuring
robust representation of both transient cardiac events and sustained rhythm
characteristics.

Periodic Pattern Recognition: The most distinctive characteristic of
MCG signals lies in the periodically occurring QRS complexes within extended
signal sequences. To effectively utilize this periodicity for enhanced cardiac fea-
ture extraction and non-periodic noise suppression, our model incorporates a
GLU designed specifically to capture long-range dependencies and reinforce these
recurring patterns. This architecture enables systematic amplification of periodic
cardiac signatures while attenuating irregular noise components through adap-
tive gating mechanisms.

2.1 The U-Net Architecture

As it can be seen in Fig. 1(a) Our model employs a U-Net architecture inte-
grated with GLUs at multiple hierarchical levels to capture periodic patterns
for denoising. The network incorporates two GLU variants: Competitive Gating
(CG) modules and Noise Gating (NG) modules. The input signal first traverses
an NG module, expanding its channel dimension from 1 to 64. Subsequent pro-
cessing involves four downsampling stages, each comprising a ResBlock, a CG
module, and a downsampling layer. Each downsampling operation halves the
signal length while doubling the channel dimension.

At the bottleneck stage, the compressed signal undergoes feature aggregation
across hierarchical layers, enabling the learning of high-level representations.
Following this, three upsampling stages progressively restore spatial resolution.
During upsampling, features from corresponding encoder stages are concatenated
with the decoder pathway, followed by processing through ResBlock and CG
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Fig. 1. Structure of the proposed Multi-Level Gated U-Net model. (a) The whole
architecture (b) The GLU module.

modules . This multi-scale feature fusion mechanism preserves critical temporal
relationships through skip connections while mitigating information loss.

After the final upsampling stage, the signal dimension reaches 64 x 1280. A
1x1 convolutional layer then reduces the channel dimension to 1, yielding the
denoised output 1 x 1280. In this model, the convolutions were implemented
with kernel sizes of 9 for the resnet block, 7 for the gating branch, and 4 for
down /upsampling and followed by RMSNorm and SiLU activation. This hier-
archical design achieves efficient information compression and reconstruction,
balancing computational efficiency with robust feature extraction across tran-
sient cardiac events and sustained rhythm patterns.

2.2 The GLU module

An intuitive approach for learning the periodic patterns in MCG signals is to em-
ploy the self-attention(SA) mechanism [18], which effectively models long-range
dependencies to capture amplitude variations and inter-cycle interval regularity.
Given an input MCG feature sequence Xi, € RT*P . where T denotes the sam-
ple length and D the feature dimension, self-attention transforms Xj, through
learnable parameter matrices Wq, Wi, Wy € RP Xdi 0 obtain query (Q), key
(K), and value (V) matrices Q = X;,Wg, K = X;,Wk, V = X;, Wy. The
output is computed as:

Xout = softmax (%) \%4 (1)

We replace the QK T computation with learnable linear projections, resulting
a gated linear unit (GLU)[4]:

Xow = 0 (f1(Xin: 0w)) © f2(Xin; Ov) (2)



Multi-Level Gated U-Net for Denoising TMR Sensor-Based MCG Signals 5

where f; and f; are linear mappings parameterized by 6y and 6y, respectively,
and o denotes the activation function. The replacement of SA with GLU is pri-
marily driven by the periodic nature of MCG signals. As MCG exhibits strong
self-correlation patterns and amplitude-dependent dependencies, GLU’s gating
mechanism (via element-wise multiplication of two linear projections) inherently
captures these global periodic features. In contrast, SA requires separate compu-
tation of Query (Q) and Key (K) introducing redundant parameters (e.g., Q/K
projection layers), which could lead to suboptimal convergence of the model.

As shown in Fig. 1(b), both f; and f> utilize the same pipeline to process
Xin. Each pipeline comprises a convolutional layer followed by a multi-head split
layer. The standard GLU with o as the softmax activation function is called
competitive gating module in our paper, as it calculates gating weights globally
through Softmax to capture the global dependencies of the signal, allowing pe-
riodic features such as QRS complexes to receive higher weights throughout the
sequence. In the first layer, the o is implemented as the sigmoid function, as it is
designed to perform preliminary processing of MCG signals with low signal-to-
noise ratio (SNR) by suppressing random noise and enhancing key features. We
call this variant of standard GLU as noise gating module. Our code is available
at https://github.com/YorkXingZeyu/MCG-denoising-project.git

3 Experiments

3.1 Data acquisition

TMR-based MCG system: We designed a TMR sensor consisting of thou-
sands of MTJs (Fig. 2(a)) connected in series and parallel for MCG signal acqui-
sition. Four TMR, sensors were arranged in a Wheatstone bridge configuration
(Fig. 2(b)) and encapsulated for protection to form a complete TMR sensor. To
amplify the signals, we designed and fabricated an ultra-low noise amplification
circuit board (Fig. 2(c)). The equivalent input noise at 1 Hz is approximately
10 nV/ \/I@7 which is lower than the noise of the TMR sensor itself. The TMR
sensor is connected the amplification board to form a TMR probe. Additionally,
we created a four-channel adapter module (Fig. 2(d)) to connect the TMR probe
and output the signals to the DAQ for real-time data visualization and record-
ing on a PC. The overall system noise level was reduced to 3-5 pt/v/Hz through
optimized system design, enabling high-sensitivity detection of MCG signals.
Simulated MCG dataset: We developed a simulated magnetic signal gen-
eration system (Fig. 2(e)) that uses a Helmholtz coil to convert electrical signals
from an arbitrary waveform generator (AWG) into magnetic signals. Inside a
magnetically shielded barrel, TMR probes capture the magnetic field generated
by the Helmholtz coil, with the magnetic field strength serving as the ground
truth. The input signals to the AWG are derived from preprocessed data in
the Kiel Cardio database[7] from seven healthy male volunteers. The primary
types of noise of clean signals from Kiel Cardio DB are thermal noise, optical
system noise, and shot noise (<15 fT/v/Hz), which are negligible after filtering,
in comparison to the captured noise from the TMR system with levels around
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Helmholtz coil .

Magnetically shielded barrel

Magnetically shielded room

Fig. 2. TMR-based MCG system and experiment setups. (a) A TMR sensor array
composed of magnetic tunnel junctions (MTJs). (b) Four TMR elements in a Wheat-
stone bridge configuration for converting magnetic signals into differential voltage. (c)
TMR sensor integrated with a 100dB amplifier and power supply circuit. (d) 4-channel
adapter module connecting the power supply and amplifier to the data acquisition sys-
tem (DAQ). (e) The experiment setup for obtaining simulated data. (f) The experiment
setup for obtaining real data.

5pT/ vHz. The data is segmented into 10-second samples. Each sample contains
several complete cardiac cycles, with the peak-to-peak range linearly scaled be-
tween 80 pT and 200 pT. A total of 6957 samples were obtained.

Real MCG dataset: The experiment was conducted in a magnetically
shielded room. Ten healthy male subjects aged between 18 and 35 years partic-
ipated in the experiment. During data collection, each one remained stationary
in a supine position (Fig. 2(f)), and probes were placed above their chest to ac-
quire MCG signals. This study adheres to the ethical guidelines of the Chinese
Academy of Sciences Institute of Automation (CASIA), China and was approved
by Human Subjects Research Ethics Review Committee of CASTA (Ref: TA21-
2302-430203). The acquired signals were filtered using a 1-35 Hz bandpass filter.
Subsequently, the signals were averaged over 101 cardiac cycles, using the R-
wave peak as a reference to obtain the ground truth. The data from the TMR
sensor were then segmented into 10-second episodes, each containing multiple
complete cardiac cycles. A total of 2868 samples were obtained.

3.2 Results

We compared MGU-Net with other methods based on four metrics, which are
Sum of the Square of the Distances (SSD), Maximum Absolute Distance (MAD),
Cosine Similarity (Cosine Sim), and Signal-to-Noise Ratio (SNR) [12]. The "Base-
line" in Table 1 was implemented by obtaining an average of the cardiac cycles
in a sample and then rearranging it to align with the peaks to form the same
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Table 1. Comparison on the Simulated and MCG Real Datasets.

Datasets Simulated MCG Dataset Real MCG Dataset
Metrics SNR 1 |SSD ||MAD ||Cosine Sim 1| SNR 1 |SSD || MAD ||Cosine Sim 1
FIR Filter[9] | -0.5462 | 6.5051 | 0.2762 0.6139 4.3598 |4.9430 | 0.2185 0.8231
IIR Filter[9] |-0.5752 | 6.5444 | 0.2763 0.6179 4.2813 |4.9999 | 0.2215 0.8347
EMDI|11] -1.2439 | 7.7633 | 0.2992 0.5732 3.6089 |5.8973 | 0.2370 0.8195
EEMD|19] 0.4674 |5.3164 | 0.2648 0.5884 3.9274 | 5.4687 | 0.2312 0.8306
VMD|5] 0.2766 |5.6047 | 0.3026 0.4544 4.5735 | 4.7173 | 0.2179 0.8308
APR-CNN [8]| 7.5702 |1.0901 | 0.1993 0.9097 10.0929 | 1.0469 | 0.1261 0.9485
TCDAE|2] 2.6863 |3.2524 | 0.2819 0.6683 5.9516 |3.4829 | 0.2118 0.8509
RA-LENet[23]| 2.1276 |3.8124 | 0.3207 0.6946 6.3643 |2.3523 | 0.2101 0.8756
DeScoD|[12] 7.7682 | 1.0632 | 0.2251 0.8988 8.3049 |2.0278 | 0.1593 0.9214
Baseline 4.2304 |2.2240 | 0.2351 0.7968 11.2663 | 1.0571 | 0.1470 0.9530
Our Model 10.5051(0.5709| 0.1511 0.9465 14.5143(0.4717| 0.0699 0.9815

length as the original sample. Five-fold cross validation was conducted, where
0.1 of the training data were used for validation. All the deep-learning models
except for DeScoD were trained for 200 epochs with early stopping and a learn-
ing rate of 0.0001. For DeScoD, a higher learning of 0.001 was used according
to its original paper. A batch size of 32 was used for all the models. For all the
deep-learning based models, we use the Adam optimizer with a learning rate of
0.0001 and batch size was set as 32. The optimization process was guided by the
mean squared error (MSE) loss.

As it can be seen in Table 1, the proposed MGU-Net method outperforms
all the other methods based on all of the four evaluation metrics. The first five
traditional methods have incremental improvement on the data due to their in-
herent constraints in handling non-stationary noise and preserving subtle cardiac
features. All of the comparison methods fail to outperform Baseline on the Real
Dataset based on SNR, which indicates that current state-of-the-art methods
fails to capture the periodic pattern in the noisy MCG signals. In comparison,
our proposed model combining U-net structure with GLU module can success-
fully capture essential information for denoising periodical MCG signals.

As shown in Fig. 3, the Baseline fails to filter the high-frequency noise from
the signal. DeScoD and APR-CNN fail to restore the QRS complex in several
cardical cycles. In contrast, only our proposed MGU-Net model achieves the best
performance in the denoising task. It accurately restores every QRS complex
with high fidelity. Low-amplitude features (like P-waves and T-waves), are also
clearly accurately restored in the sample. In aspect of clinical utility, MGU-Net
is lightweight and efficient, with 16.13 million parameters, 6.6 GFLOPs, and a
real-time inference speed of 5.06 ms (versus DeScoD: 5.31 ms and APR-CNN:
6.42 ms) per sample on an RTX 4090 GPU, making it competitive for practical
deployment.

Ablation Study In the ablation study (Table 2), we compare the impact of
CG and NG on model performance. Using CG alone improves SNR of the plain
model by 1.71 dB (Simulated) and 2.85 dB (Real). Using NG alone results in a
more significant SNR improvement of the plain model (3.22 dB for Simulated and
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Fig. 3. Denoising performance of different models on a single sample from the simulated
dataset. The red line represents the noisy input signal, the green line represents the
ground-truth signal, and the blue line represents the denoised signal. (a) The original
noisy MCG signal. (b) Denoised signal by MGU-Net. (¢) Denoised signal by Baseline.
(d) Denoised signal by DeScoD. (e) Denoised signal by the APR-CNN model.

6.16 dB for Real), with reductions in SSD and MAD, indicating NG effectively
suppresses noise. Combining CG and NG yields the best results: SNR improves
to 12.65 dB (Simulated) and 10.56 dB (Real), demonstrating the synergistic
effect of both modules. The performance of using SA is inferior to that of using
the combination of CG and NG.

4 Conclusion

This paper presents a novel deep learning model named MGU-Net for denois-
ing MCG signals acquired using TMR sensors. By integrating noise gating and
competitive gating mechanisms to capture the periodic patterns, MGU-Net ef-
fectively suppresses noise while preserving key cardiac features of MCG. Ex-
perimental results demonstrate that our method outperforms state-of-the-art
denoising models in recovery of low-amplitude P-wave and T-waves, which are
clinically essential for diagnosing arrhythmias, myocardial ischemia, and other
cardiac abnormalities, in a high-noise real MCG recording. This work provides a
foundation for the broader application of TMR-based MCG in clinical diagnos-
tics and pathological analysis, offering a cost-effective and scalable alternative
for cardiac monitoring.

Our current study was conducted only on a limited of subjects, primarily
healthy individuals with normal MCG forms. To address the limitation, we will
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Table 2. Ablation studies of the proposed model on the simulated and real MCG
datasets. The impact of Competitive Gating (CG) and Noise Gating (NG) modules
are evaluated.

Dataset CG NG SA|SSD ||MAD ||Cosine Sim 1|SNR Input|SNR Output 1|SNR Improvement 1
X x x [1.6518]| 0.2366 0.8377 -2.1423 5.6854 7.8277
Simulated MCG Dataset v x  x |1.1218| 0.2037 0.8932 -2.1423 7.3937 9.5360
X v x |0.8246 | 0.1666 0.9223 -2.1423 8.9113 11.0536
X x v [0.6564| 0.1664 0.9363 -2.1423 9.8074 11.9498
v v x0.5709|0.1511 0.9465 -2.1423 10.5051 12.6474
X X X [3.3924| 0.2775 0.8213 3.9576 4.8834 0.9258
Real MCG Dataset v x  x |2.1686| 0.2356 0.9128 3.9576 7.7366 3.7790
X v x [1.0615] 0.1487 0.9575 3.9576 11.0431 7.0855
X x v [0.5118] 0.1096 0.9769 3.9576 14.1827 10.2251
v v x|0.4717|0.0699 0.9815 3.9576 14.5143 10.5567

expand the scope of future research by incorporating a more diverse cohort
of participants, including patients with cardiac diseases. Accordingly, we will
prioritize improving the model’s stability and consistency (e.g., exploration on
multi-loss frameworks) across different populations.
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