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Abstract. Accurate identification the primary tumor of metastatic cer-
vical lymphadenopathy (CLA) is crucial for guiding clinical treatment,
yet clinical diagnosis remains challenging due to the complexity of tracing
multi-potential origins using ultrasound images and incomplete clinical
information. Existing deep learning methods typically utilize the imag-
ing semantic features from B-mode ultrasound (BUS) and color Doppler
flow imaging (CDFI), or incorporate basic clinical information, neglect-
ing the importance of patient-specific features such as tumor markers
(TMs) in clinical diagnosis. To address these limitations, we propose a
new multimodal imaging-features and distribution-based tumor-marker
fusion network (MDFN) for five categories of CLA metastatic origins
(thyroid, head and neck, respiratory, female reproductive, and digestive).
First, a distribution-based TM imputation method is proposed to recon-
struct missing TMs, which treats the available clinical information of
each patient (such as sex, age, neck region, etc.) as a vector to construct
data distributions between TMs and avoid the data bias issues. Building
on these personalized TMs, we propose the first population-personalized
fusion framework, which integrates semantic features related to lymph
node morphology from BUS images, semantic features related to vas-
cular distribution from CDFI images, and TM features consistent with
individualized patient data, thereby simulating clinical reasoning pat-
terns. The effectiveness of the proposed MDFN method was evaluated
using extensive experimental results from 3,100 multi-origin metastatic
CLA cases, achieving an area under the receiver operating characteristic
(AUC) of 0.891, with corresponding accuracy, sensitivity, specificity, and
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F1 of 0.863, 0.604, 0.913, and 0.661, respectively, outperforming other
state-of-the-art methods.

Keywords: Metastatic cervical lymphadenopathy - Multimodal imaging-
features - Distribution-based tumor-marker.

1 Introduction

Metastatic cervical lymphadenopathy (CLA), a systemic manifestation of ma-
lignancy, represents one of the most prevalent secondary cancers in patients over
40 years of age [12]. It originates from diverse primary tumors, including thyroid
carcinoma, head and neck neoplasms, nasopharyngeal cancer, and pulmonary
malignancies, etc., whose accurate identification becomes crucial for formulating
appropriate therapeutic strategies [2]. Current clinical protocols typically require
extensive diagnostic workups to localize the primary tumor sites of metastatic
CLA [9]. This underscores the imperative need to develop effective, non-invasive
computer-aided diagnosis (CAD) methods for identifying primary tumor sites.

Current non-invasive diagnostic approaches predominantly utilize conven-
tional ultrasound modalities, encompassing B-mode ultrasound (BUS) and color
Doppler flow imaging (CDFI). Radiologists primarily pay more attention to tu-
mor morphology and anatomical features based on BUS and vascular structure
features based on CDFI [3]. Nevertheless, the inherent pathological heterogene-
ity of metastatic CLA poses significant challenges in determining primary tumor
origins through conventional imaging alone. Existing research predominantly
focuses on distinguishing benign from malignant lymphadenopathy [7] or de-
tecting metastatic involvement [16], with only one published study attempting
metastatic CLA classification using BUS [19]. This preliminary investigation
achieved an AUC of 0.822 through multi-modality integration of BUS, CDFI,
ultrasound elastography (UE), contrast-enhanced ultrasound (CEUS), and clini-
cal parameters in a limited cohort (n=280). However, the clinical applicability of
the study was hampered by the small sample size and the omission of mapping
the relationships between patient-specific characteristics, such as tumor markers
(TMs) [17], which are critical for clinical diagnosis.

To better align with clinical diagnosis, we first proposed a new multimodal
fusion network, which integrates distribution-based TMs with morphological fea-
tures from BUS and vascular patterns from CDFI, enabling the classification of
five-category primary tumor origins (head and neck, thyroid, respiratory system,
female reproduction system, and digestive system), including 90% metastatic
CLA [6]. Our contributions are summarized below:

(1) Distribution-based TM imputation: A new imputation method introduces
the idea of adversarial learning to reconstruct missing TM data from each pa-
tient’s clinical information, explicitly maintaining the multivariate correlation
structures among TMs through cycle-consistency regularization.

(2) Multimodal imaging features and distribution-based TM fusion: A new
multimodal and distribution-based fusion method is proposed, which integrates
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anatomically related features extracted from BUS images, hemodynamic related
features extracted from CDFI images, and distribution-based TMs profiles after
imputation, thereby simulating the clinical diagnosis workflow.

(3) Large-scale multi-origin metastatic classification: Establishment of the
first multi-modality population-based features with personalized TMs for five-
category primary origins determination in 3,100 histologically confirmed cases,
significantly outperforming previous attempts in both scope and accuracy.

2 Related work

Ultrasound-based Related work: Due to the relevant literature on multi-
origin CLA prediction, this mainly introduces the classification of medical lesions
similar to it. Notably, recent research [18] [10] demonstrates benign-malignant
classification accuracy rates of 85%-90% when integrating multi-modality ultra-
sound features (incorporating BUS, CDFI, and CEUS, etc.). Although convo-
lutional neural network architecture has shown effectiveness in deep semantic
feature extraction, its feature space remains population-based, and the integra-
tion of the mapping relationship between each patient’s features is still an area
to be explored.

Data imputation-based related work: Missing clinical parameters repre-
sent a pervasive challenge in medical artificial intelligence, where accurate data
imputation critically determines diagnostic model performance. Current impu-
tation methodologies bifurcate into statistical approaches (e.g., Multiple Impu-
tation by Chained Equations [14], matrix decomposition [11]) and deep learning
methods. The former leverage mathematical optimization to preserve feature cor-
relations, whereas the latter construct nonlinear mapping spaces through genera-
tive architectures like adversarial networks|5]. However, the essence of the above
research is still based on a population-based image feature space, overlooking
the interaction between different clinical data of the same patient.

3 Method

As shown in Fig.1, the proposed multimodal imaging-features and distribution-
based tumor-marker fusion network (MDFN) ® primarily comprises BUS branch,
CDFTI branch, distribution-based TMs imputation branch, and feature fusion
branch.

3.1 BUS Branch

For clinicians focusing on morphological information in BUS images, this branch
employs the InceptionResNetV2 architecture [13] to extract population-based,
morphology-based semantic feature. This multiscale convolutional backbone syn-
ergistically integrates Inception-style parallel pathways (with 1 x 1, 3 x 3, and

® The code can be found at https://github.com /1r256 /MDFN.
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Fig. 1. Proposed framework of the multimodal imaging-features and distribution-based
tumor-marker fusion network (MDFN). BUS images were analyzed to extract anatomi-
cal semantic features, while CDFI images were analyzed to extract vascular distribution
features indicated by colorful dots

5 x 5 convolutional filters) and residual skip connections, enabling hierarchi-
cal learning of discriminative morphological patterns while mitigating gradient
vanishing in deep networks. The architecture’s cross-channel normalization and
batch-aware feature recalibration mechanisms enhance clinically relevant fea-
ture discovery, particularly for subtle textural variations critical in BUS inter-
pretation. Following depthwise feature aggregation through a nonlinear projec-
tion module, we apply dimensionality reduction via a learnable projection layer
(1536-d to 1024-d), generating fixed-dimensional semantic embeddings.

3.2 CDFI Branch

The CDFI branch employs a two-stage attention guidance architecture to ex-
tract population-based semantic features related to vascular patterns. First, raw
Doppler signals amplify hemodynamically salient color components through a 3-
channel (RGB) Channel Attention Mechanism module while suppressing acquisi-
tion artifacts [8]. This channel-adaptive feature recalibration precedes Inception-
ResNetV2 processing to preserve directional flow signatures critical for microvas-
cular assessment. The backbone network then extracts directional hemodynamic
features through its multiscale receptive fields, with particular emphasis on ves-
sel tortuosity and branching patterns via depthwise separable convolutions. Fol-
lowing feature aggregation, a nonlinear projection module (two fully-connected
layers with ReLU) reduces dimensionality from 1536-d to 1024-d.
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3.3 Distribution-based TMs Imputation Branch

To address the pervasive challenge of missing TMs in clinical oncology and
maintain the mapping between patient-specific features, we developed a con-
ditional adversarial imputation framework grounded in domain-specific clinical
prior knowledge. Our CycleGAN architecture [4] establishes personalized bidi-
rectional clinical-feature-to-marker mappings using five key diagnostic determi-
nants: tumor subtype, age, sex, lesion level, and short-axis diameter, thereby
emulating clinical diagnostic workflows. Specifically, each of the 10 tumor mark-
ers (AFP, CEA, CA125, CA15-3, CA19-9, HE4, CA72-4, NSE, CyFra21-1, SCC-
A) employs a dedicated CycleGAN unit comprising:Generator (G): 4-layer MLP
[1] with residual connections (ReLU) translating clinical parameters to marker
values. (D): Wasserstein GAN critic with gradient penalty (A = 10) enforcing
distributional consistency between real/generated markers. In the same way, we
also map it to a unified 1024-d using a nonlinear projection module.

3.4 Multimodal-Distribution Fusion Branch

To achieve an effective fusion of multimodal and distribution-based features
(morphological-related semantic features extracted from BUS, hemodynamic
features extracted from CDFI, and personalized TM features), we employ hi-
erarchical tensor fusion network [15]. It constructs a joint representation space
of cross-modal feature interactions by calculating the outer product of three fea-
ture vectors, capturing nonlinear and higher-order correlation between different
modes. Finally, the low-dimensional features, after tensor decomposition, are
mapped to the probability of primary tumor origin of CLA metastasis through
a linear connection layer.

4 Results and Discussion

This study retrospectively analyzed the data of 3100 metastatic cervical lymph
nodes from Sun Yat-sen University Cancer Center, of which 280 were from thy-
roid, 218 were from head and neck, 1249 were from respiratory system, 910 were
from female reproductive system, and 443 were from digestive system. The miss-
ing ratios for these TMs were 54.5%, 3.6%, 57.6%, 39.7%, 36.9%, 84.9%, 60.1%,
36.1%, 53.3%, and 85.9%, respectively. We divided the dataset into training and
test sets with an 8:2 ratio and performed 3-fold cross-validation on the training.
We conducted comparative experiments to evaluate the method’s effectiveness.

4.1 Analysis of Classification Performance

The experimental results validate the classification performance of the proposed
MDEFN framework compared with different modalities, as shown in Table 1. Com-
parative analysis of two single-modality methods revealed a 3.9% improvement
in AUC for Mpys over Mecppr (0.743 vs 0.704), aligning with radiologists’
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predominant reliance on morphological features in clinical practice. Although
the AUC of Mpys+cprr increased by 0.3% (0.746 vs 0.743), the F; was sig-
nificantly improved by 10.4% (0.445 vs 0.341), indicating enhanced precision-
recall balance. Crucially, integration of imputed TM with imaging data yielded
significant performance gains across all modality. The AUC of baseline Mpyg
improved by 9.7% when combined with TM (Mpys+rar)- Similarly, CDFI com-
bined with TM (M¢cprr+7ram) elevated AUC from 0.704 to 0.806 (increased by
10.2%), validating the complementary diagnostic value of TMs. Compared with
other methods, the proposed method MDFN effectively fused the heterogeneous
characteristics of multimodal imaging and distribution-based TMs, achieving
the optimal value among five evaluation indicators (AUC, Accuracy, Sensitivity,
Specificity, F;): AUC and Fy are 5.1% and 11.1% higher, respectively, than the
next best method (Mpystra)- Fig. 2 (a) depicts the receiver operating charac-
teristic curve of the corresponding AUC value, where proposed MDFN achieves
an optimal AUC of 89.1%, surpassing comparator methods across all specificity
thresholds. These findings collectively demonstrate MDFN’s capacity to lever-
age cross-modal synergies through tensor fusion, greatly improving classification
accuracy for metastatic cervical lymphadenopathy.

Table 1. The comparison of classification performance under different modality data.

AUC Accuracy  Sensitivity  Specificity
Method 50 o1y (95% C1)  (95% C1)  (95% C1) 11
Mpus 0.743 0.792 0.413 0.861 0.341
(0.718-0.765) (0.777-0.809) (0.383-0.443) (0.851-0.872)
Meprr 0.704 0.751 0.293 0.823 0.244
(0.676-0.729) (0.736-0.767) (0.261-0.324) (0.813-0.834)
Mpussoper 0.746 0.786 0.399 0.858 0.445
(0.721-0.768) (0.771-0.802) (0.369-0.432) (0.848-0.868)
Mpus.ar 0.840 0.848 0.542 0.901 0.550
(0.816-0.862) (0.833-0.862) (0.495-0.59) (0.891-0.910)
Meprisr 0.806 0.823 0.481 0.880 0.489
(0.778-0.831) (0.809-0.839) (0.439-0.528) (0.871-0.891)
MDEN 0.891 0.863 0.604 0.913 0.661

(0.872-0.908) (0.847-0.878) (0.561-0.647) (0.904-0.923)

4.2 Comparison with Different Imputation Method

The CycleGAN-based tumor marker imputation module constitutes a core mod-
ule of proposed MDFN method, enabling robust prediction of multi-origin metas-
tases. Fig. 2 (b) and Table 2 provides the ROC and a quantitative comparison
of the different imputation methods used in predicting multiple transfer origins.



MDEFN for Multi-Origin Metastatic CLA Classification 7

Table 2. The performance comparison under different imputation methods.

AUC Accuracy  Sensitivity = Specificity
Method 95% CI)  (95% CI)  (95% CI)  (95% CI) 11
0.858 0.860 0.558 0.906
MICE (0.837-0.878) (0.845-0.874) (0.515-0.604) (0.897-0.915) *-750
. 0.866 0.825 0.523 0.886
Average padding - ¢/6 0 883) (0.809-0.842) (0.481-0.568) (0.876-0.896) *
. 0.870 0.845 0.592 0.900
Zero padding — ¢10.0.891) (0.831-0.861) (0.547-0.64) (0.891-0.911) *-7%
Logistic regression 0.871 0.851 0-593 0.904 0.588
& & (0.850-0.890) (0.837-0.865) (0.544-0.637) (0.895-0.913) ~°
Our-CycleGAN 0.891 0.863 0.604 0913 o

(0.872-0.908) (0.847-0.878) (0.561-0.647) (0.904-0.923)

Compared to the three traditional imputation methods, fixed-value padding (av-
erage padding and zero pading) yields better classification performance (0.886
vs 0.870 vs 0.858) than the Multiple Imputation by Chained Equations (MICE)
method. This may be attributed to their conservative preservation of original
TM distributions rather than introducing spurious correlations through statis-
tical assumptions. In contrast, the proposed personalized imputation method
based on each patient’s clinical information effectively simulates the complex re-
lationship between TMs and achieves the best classification performance among
all evaluation indicators, outperforming other methods.
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Fig. 2. ROCs used to evaluate the performance of different methods.
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Table 3. Performance of the model in ablation study

AUC Accuracy  Sensitivity  Specificity
Method 95% CI)  (95% CI)  (95% CI)  (95% CI) 1
0.876 0.849 0.573 0.904
MDFEN (None CAM) ) ¢=¢ 0 894) (0.834-0.864) (0.535-0.613) (0.895-0.914) *-230
MDFN (None MDF) . 0874 0.847 0.567 0902 o0

(0.855-0.891) (0.832-0.862) (0.526-0.608) (0.892-0.912)

4.3 Ablation Study

Building on the comprehensive ablation studies in Section 4.1 (which compare
different modalities and the presence/absence of tumor markers), this analysis
focuses on the two remaining innovative components: 1) the Channel Attention
Mechanism (CAM) for context-aware feature recalibration, and 2) Multimodal-
Distribution Fusion (MDF) for cross-modal interaction modeling. As empiri-
cally demonstrated in Table 3, both modules showed consistent performance im-
provements: the CAM implementation increased the AUC from 0.876 to 0.891
(A+1.5%), enhancing sensitivity to vascular pattern variations through adap-
tive channel weighting. The addition of TF module raised the AUC from 0.874
to 0.891 and increased the Fy by 13.1%, confirming its effectiveness in fusion
imgaing and distribution-based features.

Table 4. The comparison of state-of-the art method

AUC Accuracy  Sensitivity  Specificity
Reference Method g2 o) (95% 1) (95% 1) (95% c1) 1
Zhu et al., 0.633 0.794 0.290 0.847
2024 [19] MSMEN 5 605-0.658) (0.779-0.809) (0.274-0.304) (0.838-0.857) 0229
ow  MDFN 0891 0.863 0.604 0913 o

(0.872-0.908) (0.847-0.878) (0.561-0.647) (0.904-0.923)

4.4 Comparison with Previous State-of-the-art Method

Given the limited prior research on ultrasound-based multi-origin metastasis
prediction in cervical lymphadenopathy (CLA), we conducted a comparative
analysis with the only existing method (MSMFN) presented in Table 4. Although
MSMFN originally incorporates UE and CEUS modalities alongside BUS/CDFI,
we strategically disabled these components in our implementation to ensure a
fair comparison based solely on core ultrasound modalities. In comparison, the
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proposed MDFN method aligns more closely with the diagnostic approach due to
the integration of distribution-based completed TMs and dual-modality semantic
features, thus improving the classification performance.

5 Conclusion

We proposed a population-personalized fusion network for identifying five-category
metastatic CLA. Evaluating its effectiveness on a dataset of 3,100 malignant
CLA cases from multiple metastatic origins, the method outperforms single-
modality methods and those without TM imputation, achieving an AUC of
0.891, accuracy of 0.863, sensitivity of 0.604, specificity of 0.913, and Fj score of
0.661. Additionally, the distribution-based TM imputation method from existing
clinical data to preserve interaction relationships and integrates dual-modality
image features, to improve multi-class classification performance.
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