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Abstract. Deep learning has been introduced into optical coherence
tomography angiography (OCTA) imaging, which is a non-invasive tech-
nique for visualizing vascular structures. Intralipid injection has shown
promise in improving blood cell scattering for better OCTA imaging.
However, administering intralipid to human subjects for imaging pur-
poses may raise ethical concerns. To address this challenge, we acquire
intralipid-enhanced OCTA in rats and introduce cross-domain learning
to address the domain shifts. Specifically, we collect data from eyes of
anesthetized rats to obtain motion-free data and introduce a noise-guided
self-training framework to bridge the domain gaps between rats and
primates. Additionally, an en face enhancement loss is incorporated to
further refine en face vectors during adaptation. Compared with other
classical and fully supervised OCTA imaging algorithms, our method
improves B-scan denoising performance by 53.1% and 65.0% on CNR
and BRISQUE in human subjects respectively, while enhancing vessel
contrast in en face images.

Keywords: OCTA - Image enhancement - Domain adaptation - Self-
training

1 Introduction

Optical coherence tomography angiography (OCTA) is a noninvasive technique
that provides a three-dimensional visualization of the retina and choroid vascu-
lature [I5]. It uses red blood cell motion as a natural agent to detect blood flow,
capturing signal differences between repeated OCT B-scans at the same position
[24]. This non-invasive method offers advantages over dye-based techniques in-
cluding fluorescein angiography and indocyanine green angiography [13]. With
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advantages in imaging speed and non-invasiveness, OCTA serves as an effective
tool in clinical diagnosis [5] and computer-aided algorithms [31],[33].

OCTA imaging algorithms have recently attracted considerable research in-
terest for diagnosis and detection [6]. Despite significant advances in motion
artifact correction, OCTA denoising remains a key challenge [3]. Classical OCTA
imaging methods include phase-signal-based, intensity-signal-based, and complex-
signal-based algorithms [I8]. Representative algorithms, such as optical microan-
giography (OMAG) [29], reduce noise based on the repeated OCT B-scans.

For deep learning methods, innovations primarily focus on model inputs and
ground truth generation. For example, Liu et al. [19] proposed to obtain ground
truth using a classical OCTA imaging algorithm from 48 repeated scans at the
same slow-axis position. Similarly, adjacent OCT B-scans are also leveraged in
[4], [12] and [I7] to reduce noise in fully or weakly supervised learning. Moreover,
Jiang et al. [TI1] proposed an OCTA denoising method inspired by Noise2Noise
[14], where repeated B-scans at the same position are split for input and ground
truth, respectively. For these deep learning methods, U-Net, transformers [20]
and generative adversarial networks (GANs) are commonly utilized [16], with
both two-dimensional (2D) and three-dimensional (3D) neural networks being
explored [I2]. While these methods show the feasibility of deep learning based
OCTA, they rely on a large number of repeated scans from human subjects to
obtain ground truth, which suffer from motion artifacts.

Besides overlapping scanning, intralipid injection is another approach to im-
prove OCTA imaging as it improves the scattering of the blood cells [I]. However,
it is ethnically infeasible to apply to human subjects due to safety concerns as
it may interact with ocular tissues unpredictably. In this paper, we propose to
apply intralipid injection and collect data from the eyes of anesthetized rats to
obtain high-quality ground truth with minimum motion. As there are domain
gaps between rats and primates, we propose cross-domain learning for OCTA
imaging. The contributions are as follows:

— We propose using data from intralipid rats and a source-free self-training
framework for cross-domain OCTA imaging. The self-training framework
incorporates noise estimation for adaptive denoising, mitigating domain gaps
effectively.

— We propose an en face enhancement loss to improve the OCTA en face
contrast during B-scan denoising.

— Our method achieves better quantitative scores and visual evaluation than
the state-of-the-art methods across multiple OCTA datasets.

2 Method

2.1 Preliminary — Source Domain Imaging

Our approach first trains an OCTA imaging model in the source domain, then
adapts and improves it in the target domain. For the source domain, denote OCT
or OCTA volumes as {X®,Y*}, where X* € RIXWIXM®XN® penresents OCT
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Fig. 1: Flowchart of the target domain adaptation. (a) The proposed self-training
framework. The teacher network is used to guide the student network in a self-
supervised manner, while en face is enhanced. (b) Noise estimation of OCTA.

B-scan volumes with height H®, width W*, repeated frames per position M?*
and the number of slow-axis positions N°. And Y € RF" W x1xN" i3 OCTA
ground truth. Similar to other deep learning methods, we utilize classical OCTA
algorithms to generate pseudo ground truth for the source domain.

We first improve the classical OMAG [29] algorithm by leveraging adjacent
positions for ground truth generation inspired by [12], [I7]. Denote 3, ,, as the
OCT B-scans at frame m and position n, and denote y;, as the corresponding
OCTA B-scan image, the improved OMAG is expressed as:

1 nt+k M°-—1
Yn = (2k+1) x (Ms—1) j:nZ;k ; |me - CCf+1,j| ) (1)

where k represents the number of adjacent positions. The adjacent OCT B-
scans are registered [7] before ground truth generation. We utilize L; loss for
training after obtaining the ground truth. After training, the model acquires the
capability of OCTA construction and its denoising ability is improved, as the
ground truth Y® is obtained using adjacent positions.

2.2 Target Domain Self-Training with Noise Estimation

Distribution shifts, such as variations in noise intensity across datasets, often lead
to significant performance decline for pre-trained models, presenting a significant
challenge for deep-learning OCTA imaging methods [I0]. Therefore, we design a
self-supervised framework for target domain OCTA adaptation, which is shown
in Fig.[I] The framework comprises a student network M, and a teacher network
M, both of which share the same architecture as the source domain for weight
transfer. They are initialized with the weights trained in the source domain (i.e.,
intralipid rats), and the teacher network is updated as the exponential moving
average (EMA) [2] of the student network. The outputs of the teacher network
are used as the pseudo ground truth to guide and constrain the student network.
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During self-training processes for segmentation or classification, many meth-
ods apply weak augmentation and strong augmentation for teacher networks
and student networks, respectively [25]. For OCTA adaptation, various noise is
added to the input of the student network to address domain gaps and enhance
the model’s denoising capability. In contrast, the teacher network directly takes
the original OCT images as input without augmentation, ensuring the pseudo
ground truth with minimal noise. The target domain data is denoted as X?,
where x! € RE XW'xM'x1 represents a single position within it. And the data
with added noise is denoted as &'. The self-training loss can be represented as:

Ly = [Mi(z") = M(&")]1, (2)

where M, (x!) represents the pseudo ground truth from the teacher network,
and the parameters remain fixed during backpropagation.

To introduce appropriate noise to the student network, we estimate noise
from its outputs, as shown in Fig. b). In OCTA images, the region of interest
(ROI) lies in the choroid and above, containing both signal and noise, while the
sclera layer, at the bottom, does not have vascular information [9]. So it serves
as the background for noise estimation in our method. We use the Kolmogorov-
Smirnov (KS) test [2I] to determine the noise type, such as Gaussian, Poisson, or
exponential noise. We select the noise type with the smallest maximum deviation
D of K8 test,

D =max|EDF(§'|y) — CDF(§'],)|, (3)

where EDF(-) and CDF(-) are Empirical Distribution Function and Cumula-
tive Distribution Function respectively. §° | is the background area from g', and
9" = M,(2"). Then, the parameters are estimated through maximum likelihood
estimation (MLE) [23]. After fitting the noise parameters, we sample and add
noise to the input x*. A sliding average stabilizes the noise parameters during
training. These parameters also indicate training progress. A low level of es-
timated noise indicates that the denoising process is sufficient, allowing early
stopping to prevent overfitting.

2.3 En Face Constraints for Enhancement

En face images play a critical role in clinical diagnosis. Therefore, it is necessary
to not only denoise OCTA B-scan but also enhance en face images [28]. En face
images F € RW'*N' jg usually obtained by averaging the OCTA B-scans along
the axial direction and then stacking them, where W* and N* are the width and
the number of positions respectively. And the OCTA B-scans for en face can be
generated using either the pre-trained model or classical methods.

Image formation model (IFM) [§] is a classical approach that is widely used
in natural image dehazing and image enhancement [32]. Our method applies
IFM to enhance en face images. The equation is expressed as:

E-A
t

E:

+A, (4)
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Table 1: Datasets.
Object Domain Intralipid OCTA Images Volumes Data Size
Rat Source v 14308 (Train) 28 512 x 1024 x 4 x 511
Monkey Target X 1500/1500 (Adapt/Test) 1/1 1024 x 1536 x 3 x 1500
Human Target X 2025/225 (Adapt/Test) 9/1 256 x 992 x 3 x 225

where A represents the global atmospheric light in IFM, which can be esti-
mated by the local average of the brightness of the original en face image E in
our method. And 0 < ¢ < 1 describes the transmissivity of the medium. The
enhanced en face E can be obtained given the transmission parameter ¢.

Subsequently, the enhanced en face E = [é1;€2;...;éNt] is employed to
constrain the student network, where each lateral vector é represents a single
slow-axis position. During the training process, the output of the student network
§' is averaged along the axis to obtain a lateral en face vector z, where &,z €
RUXW' I general, images with higher noise intensity tend to have higher mean
values in their lateral en face vectors. As denoising reduces noise in non-ROI
regions, the mean of lateral en face vectors decreases. Therefore, we utilize the
Pearson correlation coefficient to reduce the impact of noise in the label é. The
en face enhancement loss is represented as:

Le=1-r(€&z2), (5)

_ > (e—p(é)(z—pu=))

V(€= p(@)2/ (2 — u(2))?
where 7(é, z) is the Pearson correlation coefficient. u(-) is used to calculate the
mean of the vector. The overall loss function is expressed as follows:

(6)

r(é, z)

L=_Ly+ M\, (7)

After training, the teacher network is saved to serve as the imaging and enhance-
ment model.

3 Experiments

3.1 Experimental Settings

Data collection: We utilize OCTA from rats, monkeys and humans in our
study, and the collected data is described in Table [I} We use a Cirrus Angio-
plex SD-OCT for rat data, capturing 4 frames per slow-axis position across 511
positions, with a size of 512 x 1024 for B-scans. The rats were injected intra-
venously with 20% intralipid (3ml/kg). The rat OCTA exhibits high quality and
low noise levels for OCTA data and therefore is used as the source domain.
For the target domain, monkey and human data is collected without intralipid
and each position is scanned only three times, resulting in a high noise level
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(a) OCTARA [26]  (b) OMAG [29] (c) -FOMAG (d) Li et al. [I6]

Fig.2: OCTA B-scans of monkey. ROI and background are enlarged below.

for B-scans. In rat and monkey data collection, the subjects were anesthetized
with a mixed sedative to prevent motion artifacts. Monkey and human data are
adapted separately.

Model training: An U-Net architecture with 8 x downsampling is employed
as the backbone. For the source domain, we use 3 repeated B-scans as the input
and ground truths are generated using OMAG algorithm [29] with 12 frames of
OCT B-scans from adjacent locations (k = 1). During self-training, an additional
fixed noise is introduced as momentum, based on the noise parameters of the
early stage, to accelerate the training process. And the momentum of EMA is
set to 0.999.

Evaluation: We use no-reference evaluation metrics due to the absence
of golden ground truth. For B-scans, contrast-to-noise ratio (CNR) [30] and
BRISQUE [22] (BRI) are utilized. The background region for CNR is from the
deep sclera region, while the ROI region is above the choroid. For en face, entropy
[27] (ENT) is used to evaluate the overall performance. We also compute the in-
tensity difference between vessels and background along line segments, referred
to as the vessel contrast score (VC), to evaluate vessel enhancement.

3.2 Ablation Studies

The monkey data is used for our ablation study because it does not have motion
artifacts. Quantitative evaluation results are shown in Table 2] The visual com-
parison of B-scan and en face images is shown in Fig. 2 and Fig. [3] respectively.

B-scan denoising: The baseline (w/o L, & L.) achieves a CNR of 14.8 and
a BRISQUE of 45.3 for the target domain (monkey) with the source domain
weights (rat). However, it achieves a CNR of 32.9 and a BRISQUE of 30.2 when
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Table 2: Ablation study on monkey OCTA.
B-scan En face
CNR T BRI J ENT 1 VC T
w/o Ls & L. 14.8 45.3 4.17 56.8
w/o Le 279 109 3.93 78.3
Ours (A\=0.2)| 286 84 416 857
Ours (A\=5) | 27.5 125 4.22 859
Ours (A=1) | 31.4 7.6 421 87.4

Table 3: Comparison with other methods.
Monkey Human
B-scan En face B-scan En face
CNR 1 BRI | ENT 1 VC 1|CNR 1 BRI | ENT 1 VC 1
OCTARA [26] 1.2 74.8 4.1 40.8| 2.6 25.7 3.2 9.5

OMAG [29] 33 809 40 444| 24 727 33 9.7
i-OMAG 52 639 41 519 99 366 3.0 106
Li et al. [16] 24 849 41 41.7| 52 725 31 172
Jiang et ol. [I1]| 6.3 55,5 3.8 39.5| 14.5 19.7 29 20.3
Ours 314 7.6 4.2 87.4| 222 6.9 3.6 53.2

tested on the source domain. The performance drop in the target domain is be-
cause of a domain gap, such as differences in signal-to-noise ratios and species.
There is a significant improvement in both CNR and BRISQUE after incorporat-
ing self-training and £,. As shown in Fig. g), background noise is suppressed
after self-training. From Fig. h)7 the vascular information in the ROI region of
the B-scan images becomes increasingly distinct with our en face enhancement
loss. After adaptation, our method achieves a denoising performance comparable
to that of the source domain. These improvements demonstrate the superiority
of our approach in addressing the domain gap and enhancing image quality.

En face enhancement: For en face images, we directly average and stack
B-scan images along the axial direction for evaluation, followed by Min-Max nor-
malization of the resulting stacked en face images. While L primarily constrains
the B-scan, the improvement in en face images mainly relies on £.. With the
introduction of the en face enhancement loss, our method achieves strong quanti-
tative performance, with an entropy of 4.21 and a vessel contrast of 87.4. In Fig.
B(h), our method has better overall contrast and vascular structures than other
methods. The results demonstrate the capability of our method in enhancing en
face images.

3.3 Comparison with Other Methods

We compare classical OCTA imaging methods, including OCTARA [26], OMAG
[29] and i-OMAG, as well as deep learning methods proposed by Li et al. [16]
and Jiang et al. [II]. i-OMAG is the improved version of OMAG by utilizing
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(a) OCTARA [26]  (b) OMAG [29] (c) i-OMAG (d) Li et al. [16]

(e) Jiang et al. [[] (1) w/o Lo & Lo (&) w/o L (h) Ours

Fig. 3: OCTA en face images of monkey.

adjacent positions (refer to Section 2.1). The deep learning methods are trained
on the target domain, and initialized with the source domain weights.

Quantitative results are presented in Table [3] while visual samples in B-scan
and en face are shown in Fig. [2]and Fig. [3|respectively. Our method achieves the
best quantitative scores for both monkey and human datasets. For B-scan im-
ages, our method outperforms the second-best approach by 53.1% and 65.0% in
CNR and BRISQUE respectively in human subjects. The results of i-OMAG per-
form better than the original OMAG in B-scans, which indicates the effectiveness
of utilizing adjacent positions. It is worth noting that our baseline model (w/o
Ls & L.) achieves a CNR of 14.8 and a BRISQUE of 45.3 on monkey OCTA (see
Table , outperforming other methods. Although other deep learning methods
also load the weights from the source domain, poor pseudo ground truth results
in detrimental optimization, which hinders effective transfer learning. For en face
images, while other methods do not consider en face enhancement, our method
achieves significant improvements, as shown in Fig.

For full-reference evaluation, we have another machine with a different setup
that can conduct 1000 overlapping scans in 2D mode for monkey. We use first 3
scans as input and synthesize the ground truth using averaging from 1000 scans
for 2D imaging in this machine. Our method, without the en face enhance-
ment loss (not applicable for 2D), applies to 234 different locations (26 different
monkey eyes) and achieves a PSNR of 31.6933 and SSIM of 0.7134, surpassing
OMAG, which achieves a PSNR of 24.5673 and an SSIM of 0.4759.

Both numerical and visual results demonstrate the enhancement capability of
our method and its effectiveness in preserving en face vascular information. Our
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method has advantages in transferring learning from high-quality data, especially
in scenarios where the target domain has high noise intensity. Furthermore, our
method surpasses the performance boundaries of classical methods and other
fully supervised methods by leveraging high-quality weights and self-supervised
adaptation.

4 Conclusion

This paper introduces a cross-domain OCTA imaging algorithm that achieves B-
scan denoising and en face enhancement through a self-training framework. The
proposed method demonstrates robust cross-domain enhancement capabilities,
surpassing the performances of fully supervised OCTA algorithms. It performs
effectively on both en face and B-scan images. Incorporating attention mecha-
nisms among various OCTA layers during enhancement will be a key focus of
our future work.
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