
Meta-Learning Physics-Informed Neural
Networks for Personalized Cardiac Modeling

Maryam Toloubidokhti1[0000−0003−2923−441X], Ryan
Missel1[0000−0002−9509−6775], Shichang Lian1[0009−0004−6757−6212], and Linwei

Wang1[0000−0002−5678−2369]

Rochester Institute of Technology (RIT), Rochester, NY, 14623, USA
{mt6129,rxm7244,sl5074,lxwast}@rit.edu

Abstract. The advancement of personalized cardiac modeling, particu-
larly through digital cardiac twins, enables tailored treatments based on
the physiology of the individual patient. Traditional physics-based meth-
ods for optimizing the parameters of these cardiac models face challenges
in clinical adoption due to their computational cost. Recent shifts to-
wards data-driven approaches offer improved efficiency, but struggle with
generalization and integration of core electrophysiological principles. The
emerging use of physics-informed neural networks (PINNs) has the po-
tential to combine the advantages of these two approaches, although still
requiring retraining from scratch for each subject. This paper introduces
a novel framework for meta-learning PINNs to overcome these challenges,
enabling rapid personalization of a PINN to new subjects’ data via sim-
ple feedforward computation. We instantiate this meta-PINN framework
using the Eikonal model as the governing physics, demonstrating its ef-
ficacy in significantly reducing computational demands while improving
the predictive accuracy of personalized cardiac models. 1
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1 Introduction

The progress in cardiac modeling, particularly through the lens of digital twins,
marks a significant leap in cardiac care. These models, when properly personal-
ized for an individual, allow the planning of treatments [18, 1, 6] and prediction
of interventional outcomes [22, 8] for individual subjects. However, rapidly per-
sonalizing the functional parameters of these models remains an open challenge.

Earlier progress in estimating cardiac model parameters is deeply rooted
in physics-based methodologies, primarily involving iterative optimization of a
cardiac model to fit its outputs to available measurements [22, 23, 5]. Due to
the need for repeated simulations of complex physics-based equations over a
large parameter space, these approaches are associated with significant time and
computational cost, resulting in limited applicability for real-time or near-real-
time clinical use. Furthermore, because these optimizations are independently
1 Source code available at https://github.com/temporary-repos/MICCAI2025
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conducted for each personalization task, they miss the opportunity to accumulate
knowledge about how to rapidly personalize to different individuals’ data.

To address these limitations, recent advancements have pivoted towards data-
driven approaches. Techniques such as reinforcement learning [17, 16] and direct
modeling of input-output relationships [10, 9] have been explored. The emergence
of deep learning has further enabled neural surrogates capable of approximat-
ing complex physiological phenomena. Examples include neural surrogates for
cardiovascular hemodynamics that leverage transfer learning for rapid adapta-
tion to new subjects [25], the application of conditional variational autoencoders
for predicting ventricular activation using 3D bi-ventricular meshes and elec-
trocardiogram simulations [15], and the meta-learning of spatiotemporal graph
convolutional neural networks as a patient-specific surrogate of cardiac electro-
physiological (EP) models [14]. While these approaches prioritize computational
efficiency, their interpretability is often obscured by neglecting the underlying
physical principles of cardiac behavior. Furthermore, their training often requires
time-consuming generation of a large quantity of high-fidelity simulation data,
while their ability to generalize from simulation to clinical data remains unclear.

Physics-informed neural networks (PINNs) recently emerged as a potential
solution to bridge the gap between physics-based and data-driven approaches
[19]. PINNs integrate known physical laws – in the form of a partial differential
equation (PDE) – through a PDE residual loss to encourage the neural network
to approximate PDE solutions without direct supervision from these solutions
[7, 19]. Recent studies have successfully utilized PINNs in personalized cardiac
EP modeling [24, 13, 20]. In EP-PINN [13], a PINN is trained to generate action
potentials in a 2D grid while estimating the PDE’s key EP parameters. In [24], a
spatial-temporal adaptive strategy is introduced to enhance the ability of PINNs
to handle complex geometry, long time domain, and sharp gradients in PDE solu-
tions. In FiberNet [20], a PINN is learned to solve for the Eikonal equation when
inferring its spatially-varying fiber orientations from electroanatomical maps.

Despite this progress, a significant challenge remains for the widespread ap-
plication of PINNs in personalized cardiac modeling: because the optimization
of PINN is governed (in part) by a known PDE with its associated physics-based
parameters, to personalize it requires the PINN to be re-trained from scratch
along with estimating patient-specific parameters for the governing PDE. This
results in a bottleneck similar to traditional physics-based approaches: the com-
putational burden for clinical adoption, and a missed opportunity to learn how to
personalize a PINN to shift this burden from deployment to offline development.

To address this critical gap, we introduce a novel framework for meta-learning
the personalization of PINNs, enabling the rapid adaptation of a PINN to new
patient-specific data without the need for retraining. It includes three key com-
ponents: 1) an adaptive PINN whose weight parameters are generated from a
hypernetwork from inferred patient-specific embeddings, 2) a conduction veloc-
ity network that personalizes the parameters of the governing PDE in a similar
fashion, and 3) a meta-learning approach that learns to extract patient-specific
embeddings from few-shot context observations in a rapid feedforward fashion.
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As a proof of concept, we developed the proposed meta-PINN framework for
the isotropic Eikonal PDE [21] with spatially varying tissue properties. In in-
silico and in-vivo experiments, we evaluated meta-PINN against physics-based
and neural approaches to personalized EP modeling, as well as state-of-the-art
PINN approaches where each PINN is individually optimized for each individ-
ual heart. We show that, at deployment time given sparse measurements from a
patient, meta-PINN is able to deliver a personalized and physics-informed neu-
ral surrogate for cardiac EP via real-time feedforward computation, making an
important stride towards fast adaptation of cardiac digital twins.

2 Background

Eikonal PDE: The Eikonal PDE is widely used to model the rapid propagation
of electrical currents across the myocardium. We consider the isotropic Eikonal:

|∇T (x)|F (x) = 1 (1)

where T (x) is a scalar field representing the arrival time of the electrical wave-
front at spatial position x ∈ R3, and F (x) is a scalar field with units of speed
(mm/ms) representing the local conduction velocity. While F (x) denotes speed
in an isotropic medium, we use the term conduction velocity following stan-
dard cardiac electrophysiology terminology. This equation effectively captures
the isotropic propagation of electrical signals through the heterogeneous medium
of the heart, accounting for varying conductivity in space.

PINNs: PINNs embed known physical laws into the learning algorithm of neu-
ral networks. In the context of the Eikonal PDE, a PINN TNNϕ

(x) parameterized
by ϕ can be designed to output the arrival time of the electrical wavefront at any
input spatial position x. Instead of conventional supervised training, the key to
PINN training is a PDE residual loss LPDE that encapsulates the adherence of
TNNϕ

(x) to the governing Eikonal physics as:

LPDE(TNNϕ
;F (x)) =

1

NPDE

∑NPDE

j=1

(
|∇TNNϕ

(xj)|F (xj)− 1
)2 (2)

where NPDE is the number of residual points on which the PDE constraint
is enforced. When observations of the arrival time Y = Tobs(x) are available at
Ndata number of locations xi, a data-fidelity loss Ldata can also be enforced:

Ldata(TNNϕ
, Y ) =

1

Ndata

∑Ndata

i=1

(
TNNϕ

(xi)− Y (xi)
)2 (3)

If the conduction velocity F (x) is unknown, it must be simultaneously esti-
mated when ϕ is optimized, resulting in the following optimization objective:

{ϕ̂, F̂ (x)} = arg min
ϕ,F (x)

{Ldata(TNNϕ
, Y ) + αLPDE(TNNϕ

;F (x))} (4)

where the hyperparameter α balances the two losses. In state-of-the-art PINNs,
TNNϕ̂

(x) and F̂ (x) must be optimized from scratch for each set of measurements.
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Fig. 1. Overview of meta-PINN. At inference time, sparse context AT samples on the
ventricular geometry are used to extract a patient-specific embedding that adapts the
PINN and velocity network to estimate personalized conduction velocity and the full
volumetric AT map of a query sample, given only the first 20% of its activation.

3 Methodology

Fig. 1 outlines the proposed meta-PINN framework for personalized cardiac EP
modeling. Instead of optimizing TNNϕ

and F (x) from scratch for each set of
observations Y using Equation (4), we aim to learn to personalize TNNϕ

and
F (x) via a meta-learning approach to automatically adapt them to patient-
specific Y in real time. This is achieved with two key components:

– Learn-to-personalize meta-inference: a feedforward meta-learner that ex-
tracts patient-specific embeddings from context observations of a subject.

– Adaptive generative models: a PINN TNNϕ
(x) and velocity network FNNγ (x),

with ϕ and γ adaptable to patient-specific embeddings through hypernet-
works, to predict for any other samples for the same patient.

Adaptable PINN and Velocity-Net: To model the spatially-varying conduc-
tion velocity to capture local abnormality, we model F (x) with a neural network
FNNγ (x) and term it the velocity-net, similar to the framework presented in [20,
21]. To avoid repeating the optimization of ϕ and γ for TNNϕ

and FNNγ for
every observation Y , we model ϕ and γ with hypernetworks [12, 2] as:

ϕ = HθPINN(λPINN), γ = Hθv(λv) (5)

where λPINN or λv are learnable patient-specific embeddings that will be de-
scribed in the next section, while θPINN and θv represent the learnable weight
parameters of the hypernetworks. These adaptive generative models mitigate the
need for inefficient optimization-from-scratch for each new set of observations.
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Learning to Identify the PINN and Velocity-Net: To identify the patient-
specific embedding λPINN and λv that can adapt TNNϕ

and FNNγ , we con-
sider their respective generative factors. For an observed activation sequence to
be modeled by the PINN TNNϕ

, there are two primary generative factors: the
spatially-varying tissue property c and the sources of activation s. They each cor-
respond to the parameter and initial condition for the governing Eikonal PDE:
in other words, c is also the generative factor for the conduction velocity FNNγ .
Therefore, we can define λPINN = (c, s) and λv = c.

While it is possible to simply infer c and s from an observed activation map
Y , a challenge of identifiability arises: what additional learning signal is needed
in order to encourage the model to learn to separate these two embeddings
from the same Y ? We consider an important distinction between them: the
tissue property corresponding to c is specific to a subject i but can be shared
by multiple activation maps Yi = {Y (j)

i }kj=1 from the same subject, while the
initial condition corresponding to s is specific to each activation map Y

(j)
i .

Source Encoder: The source encoder Eψs , parameterized by ψs, aims to iden-
tify the representation of the source of activation unique to each Y

(j)
i as:

s
(j)
i = Eψs(Y

(j)
i ) (6)

Velocity Encoder: The velocity encoder Eψc , parameterized by ψc, aims to
identify the representation for the heterogeneous tissue property by extracting
the shared embedding from k activation maps {Y (j)

i }kj=1 from the same subject
i. To provide an explicit learning signal for a shared ci for subject i, we obtain
an embedding from each Y

(j)
i and then aggregate them via a simple averaging:

ci =
1

K

K∑
k=1

Eψc(Y
(k)
i ) (7)

The Learn-to-Identify Meta-Objectives: Given a dataset of observed acti-
vation maps for N subjects Y = {Yi}Ni=1, where M activation time maps with
varying sources of activation are available for each subject Yi = {Y (j)

i }Mj=1,
we now formulate a meta-learning objective to learn to personalize TNNϕ

and
FNNγ . More specifically, for each subject i, we consider k activation maps as
context samples Yci = {Y c,(j)

i }kj=1 while the remaining as query samples Yqi =

{Y q,(j)
i }M−k

j=1 .
For each query sample Y q

i , the model extracts a subject-specific embedding
c from the context set Yci and and activation-specific embedding s from only the
first 20% activation of Y q

i . These embeddings are then used to adapt the PINN
and velocity-net for predicting the full Y q

i while minimizing the PDE residual
loss as:

Θ̂ = argmin
Θ

∑N

i=1

∑
Y q
i ∈Yq

i

{
Ldata(TNNϕ

, Y q
i ) + αLPDE(TNNϕ

;FNNγ )
}

(8)



6 F. Author et al.

where Θ = {ψs,ψc,θPINN,θv}. This optimization is carried out in an episodic
training scheme, where the division of context and query samples is changed at
each epoch for each subject. The outcome is a meta-model that, given k (which
can be variable) observed activation maps for a subject, can obtain a subject-
specific PINN along with an estimate of the spatially-varying conduction velocity
for that subject — all via simple and rapid feedforward computation.

4 Experiments and Results

In all experiments, meta-PINN employed encoders with six SplineConv layers
(kernel size = 5, dim = 3) followed by adaptive max pooling, effectively cap-
turing spatial relations in the ventricular geometry. The PINN hypernetwork
consisted of four fully connected layers, generating parameters for the six-layer
PINN with 20 neurons per layer and Tanh activation. Similarly, the velocity
hypernetwork had five hidden layers, producing parameters for the eight-layer
velocity network with ReLU activation. Optimization was carried out using the
AdamW optimizer, starting with a learning rate of 2 × 10−5 that we adjusted
using a cosine annealing scheduler. We gradually increased the PDE loss hyper-
parameter, α, from 0 to 1 throughout the training epochs. Each training episode,
executed on an NVIDIA RTX 3090 with 24GB of memory, took ∼ 3 seconds.

4.1 Synthetic Data Experiments

Data: We created activation-time (AT) maps using the Eikonal model in Equa-
tion (1), utilizing the fast marching method from the fim-python library [11]. We
obtained four unique human ventricular geometries from MRI images, aligned
via non-rigid registration. Two tissue classes were modeled: scar (0.1 m/s) and
healthy (0.6 m/s), with scars placed at five distinct locations per geometry. For
each scar-geometry combination, we generated 20 AT maps with random place-
ments of the site of origin, resulting in 400 AT maps, 200 for training and 200
for test. Train and test samples were split by activation origin per task; all tasks
appear in both splits. We set k = 5 for the context set. To reflect practice, we use
endocardial AT measurements (200-400 nodes), to predict AT and conduction
velocity throughout the ventricular myocardium (1600-2400 nodes).

Baselines & Metrics: We evaluated meta-PINN against three baselines: 1) di-
rect optimization of F (x) for the Eikonal PDE using the gradient-free BOBYQA
algorithm [4] (physics-based); 2) data-driven meta-learning of TNNϕ

but without
PDE-residual loss, similar to [14] – this can also be seen as an ablation of the pre-
sented meta-PINN (meta-neural); and 3) standalone PINN models where TNNϕ

is optimized for each observed activation time and FNNγ is shared across PINNs
of the same subject, similar to that described in [20] (multi-PINN ). Because
meta-neural and meta-PINN have predictive abilities once personalized from
context samples, they were tested for that purpose. Physics-based optimization
and multi-PINN were optimized to each test sample instead.
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Fig. 2. Quantitative results on synthetic data. Meta-PINN gained significant improve-
ments in AT and velocity accuracy compared to physics-based optimization and multi-
PINN at a fraction of computation. Its performance and computation were comparable
to meta-neural, with added benefit of interpretable personalized velocity estimation.

For quantitative metrics, we considered 1) relative mean squared error (RMSE)
and 2) spatial correlation coefficient (SCC) between predicted and true AT maps
and velocity fields, as well as 3) computational cost to achieve personalization.

Results: Fig. 2 summarizes the quantitative results while visual examples are
shown in Fig. 3. Compared to physics-based optimization (red) and multi-PINN
(green), meta-PINN (orange) obtained significantly improved accuracy in both
AT map prediction and velocity estimation, e.g., 22.3±4.0% and 68.9±10.0% im-
provements in SCC respectively for AT and velocity maps, compared to physics;
and 19.7±4.7% and 36.2±4.1% improvements compared to multi-PINN. These
improvements were obtained with a fraction of computation time to personalize
(0.009±0.007% of physics-based, and 0.003±0.002% of multi-PINN). Compared
to meta-neural (blue), meta-PINN achieved comparable accuracy in predicting
unseen AT maps with slightly higher computation time. It however had the ben-
efit of delivering subject-specific conduction velocity maps as shown in Fig. 3,
leading to interpretable clinical utility.

Ablation and Analysis: We conducted three ablation-style analyses. First, we
evaluated the model’s sensitivity to the number of context observations k. Meta-
PINN showed stable performance with fewer context maps: for k=1, AT/velocity
SCC = 0.86 ± 0.17/0.56 ± 0.26; for k=3, 0.86 ± 0.16/0.59 ± 0.20; and for k=5,
0.87±0.15/0.60±0.19 suggesting strong robustness with sparse supervision. Sec-
ond, to assess whether accuracy differs between observed and unobserved regions,
we conducted a preliminary stratified analysis: meta-PINN achieved AT/velocity
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Fig. 3. Visual examples on synthetic data. Meta-PINN showed significantly improved
AT and velocity compared to multi-PINN and physics-based optimization. Meta-neural
showed similar AT maps without an ability to deliver personalized conduction velocity.

SCC of 0.87/0.57 on the endocardium (where measurements are) and 0.87/0.60
on the remaining myocardium; given the minimal difference, full regional anal-
ysis is left to future work. Finally, we evaluated meta-PINN’s adherence to the
Eikonal PDE. As shown in the last row of Fig. 3, residual heatmaps indicate
smoothly minimized PDE loss. Without any test-time retraining, meta-PINN
achieved a per-node residual of 0.31 ± 0.18, comparable to individually trained
PINNs (0.29± 0.04), confirming its ability to satisfy PDE constraints.

4.2 Real Data Experiments

Data: We considered in-vivo data from an animal model experiment [3], which
included cardiac activation sequences driven by bipolar stimulation via intramu-
ral plunge needles at six different left-ventricular locations. Epicardial potentials
were recorded using a 247-electrode sock, and geometric surfaces were then gen-
erated from the electrode positions acquired during the experiment.

Baselines & Metrics: We directly tested meta-PINN and meta-neural trained
from synthetic data, each time considering five epicardial maps as the context to
predict the left-out activation map. Note the large generalization gap due to both
the sim-to-real gap and the change of endocardial to epicardial measurements.
Physics-based and multi-PINN were optimized from scratch.

Results: Fig. 4 provides several visuals of predicted AT maps. Note the rel-
atively stronger performance of physics-based optimization and multi-PINN as
they were optimized from scratch to all six available maps. Meta-neural, in com-
parison, completely failed in this generalization task by producing similar out-
puts across all test cases. Meta-PINN, in comparison, was able to capture the
main activation patterns with a performance similar to multi-PINN, demonstrat-
ing the benefit of physics inductive bias compared to its fully neural counterpart.
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Fig. 4. Visual examples on real-data AT maps.

4.3 Conclusion & Discussion

We presented an innovative meta-PINN for learning to rapidly adapt a person-
alized and physics-informed surrogate to sparse surface AT measurements from
a subject. Results showed improved accuracy and computational efficiency over
existing approaches. As a proof-of-concept, this study can be strengthened by
a systematic generalization study considering unseen geometry or scar settings
in synthetic experiments, as well as evaluation on a larger number of real-data
experiments. Future works will extend meta-PINN to anisotropic Eikonal PDE,
higher-fidelity cardiac EP models, as well as beyond the domain of cardiac EP.

Acknowledgments. This study was supported by NIH National Heart, Lung, And
Blood Institute (NHLBI) grant R01HL145590, NIH National Institute of Nursing Re-
search (NINR) grant R01NR0183 and NSF OAC-2212548.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Arevalo, H.J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K.C.,
Trayanova, N.A.: Arrhythmia risk stratification of patients after myocardial infarc-
tion using personalized heart models. Nature communications 7(1), 11437 (2016)

2. de Avila Belbute-Peres, F., Chen, Y.f., Sha, F.: Hyperpinn: Learning parameterized
differential equations with physics-informed hypernetworks. The symbiosis of deep
learning and differential equations 690 (2021)

3. Bergquist, J.A., Good, W.W., Zenger, B., Tate, J.D., Rupp, L.C., MacLeod, R.S.:
The electrocardiographic forward problem: A benchmark study. Computers in bi-
ology and medicine 134, 104476 (2021)

4. Cartis, C., Fiala, J., Marteau, B., Roberts, L.: Improving the flexibility and ro-
bustness of model-based derivative-free optimization solvers. ACM Transactions
on Mathematical Software (TOMS) 45(3), 1–41 (2019)

5. Chinchapatnam, P., Rhode, K.S., Ginks, M., Mansi, T., Peyrat, J.M., Lambiase,
P., Rinaldi, C.A., Razavi, R., Arridge, S., Sermesant, M.: Estimation of volumetric



10 F. Author et al.

myocardial apparent conductivity from endocardial electro-anatomical mapping.
In: 2009 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. pp. 2907–2910. IEEE (2009)

6. Corral-Acero, J., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y.,
Gilbert, A., Fernandes, J.F., Bukhari, H.A., Wajdan, A., et al.: The ‘digital twin’to
enable the vision of precision cardiology. European heart journal 41(48), 4556–4564
(2020)

7. Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Sci-
entific machine learning through physics–informed neural networks: Where we are
and what’s next. Journal of Scientific Computing 92(3), 88 (2022)

8. Gerach, T., Schuler, S., Fröhlich, J., Lindner, L., Kovacheva, E., Moss, R., Wülfers,
E.M., Seemann, G., Wieners, C., Loewe, A.: Electro-mechanical whole-heart digital
twins: a fully coupled multi-physics approach. Mathematics 9(11), 1247 (2021)

9. Giffard-Roisin, S., Delingette, H., Jackson, T., Fovargue, L., Lee, J., Rinaldi, A.,
Ayache, N., Razavi, R., Sermesant, M.: Sparse bayesian non-linear regression for
multiple onsets estimation in non-invasive cardiac electrophysiology. In: Functional
Imaging and Modelling of the Heart: 9th International Conference, FIMH 2017,
Toronto, ON, Canada, June 11-13, 2017, Proceedings 9. pp. 230–238. Springer
(2017)

10. Giffard-Roisin, S., Jackson, T., Fovargue, L., Lee, J., Delingette, H., Razavi, R.,
Ayache, N., Sermesant, M.: Noninvasive personalization of a cardiac electrophysiol-
ogy model from body surface potential mapping. IEEE Transactions on Biomedical
Engineering 64(9), 2206–2218 (2016)

11. Grandits, T.: A fast iterative method python package. Journal of Open
Source Software 6(66), 3641 (2021). https://doi.org/10.21105/joss.03641,
https://doi.org/10.21105/joss.03641

12. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)
13. Herrero Martin, C., Oved, A., Chowdhury, R.A., Ullmann, E., Peters, N.S.,

Bharath, A.A., Varela, M.: Ep-pinns: Cardiac electrophysiology characterisation
using physics-informed neural networks. Frontiers in Cardiovascular Medicine 8,
768419 (2022)

14. Jiang, X., Li, Z., Missel, R., Zaman, M.S., Zenger, B., Good, W.W., MacLeod, R.S.,
Sapp, J.L., Wang, L.: Few-shot generation of personalized neural surrogates for car-
diac simulation via bayesian meta-learning. In: International Conference on Med-
ical Image Computing and Computer-Assisted Intervention. pp. 46–56. Springer
(2022)

15. Li, L., Camps, J., Banerjee, A., Beetz, M., Rodriguez, B., Grau, V.: Deep computa-
tional model for the inference of ventricular activation properties. In: International
Workshop on Statistical Atlases and Computational Models of the Heart. pp. 369–
380. Springer (2022)

16. Neumann, D., Mansi, T.: Machine learning methods for robust parameter esti-
mation. In: Artificial Intelligence for Computational Modeling of the Heart, pp.
161–181. Elsevier (2020)

17. Neumann, D., Mansi, T., Itu, L., Georgescu, B., Kayvanpour, E., Sedaghat-
Hamedani, F., Amr, A., Haas, J., Katus, H., Meder, B., et al.: A self-taught arti-
ficial agent for multi-physics computational model personalization. Medical image
analysis 34, 52–64 (2016)

18. Prakosa, A., Arevalo, H.J., Deng, D., Boyle, P.M., Nikolov, P.P., Ashikaga, H.,
Blauer, J.J., Ghafoori, E., Park, C.J., Blake III, R.C., et al.: Personalized virtual-
heart technology for guiding the ablation of infarct-related ventricular tachycardia.
Nature biomedical engineering 2(10), 732–740 (2018)



Title Suppressed Due to Excessive Length 11

19. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics 378,
686–707 (2 2019). https://doi.org/10.1016/j.jcp.2018.10.045

20. Ruiz Herrera, C., Grandits, T., Plank, G., Perdikaris, P., Sahli Costabal, F., Pez-
zuto, S.: Physics-informed neural networks to learn cardiac fiber orientation from
multiple electroanatomical maps. Engineering with Computers 38(5), 3957–3973
(2022)

21. Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D.E., Kuhl, E.: Physics-
informed neural networks for cardiac activation mapping. Frontiers in Physics 8,
42 (2020)

22. Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau,
P., Peyrat, J.M., Wong, K., Relan, J., Rhode, K., et al.: Patient-specific electrome-
chanical models of the heart for the prediction of pacing acute effects in crt: a
preliminary clinical validation. Medical image analysis 16(1), 201–215 (2012)

23. Wong, K.C., Sermesant, M., Rhode, K., Ginks, M., Rinaldi, C.A., Razavi, R.,
Delingette, H., Ayache, N.: Velocity-based cardiac contractility personalization
from images using derivative-free optimization. Journal of the mechanical behavior
of biomedical materials 43, 35–52 (2015)

24. Ye, Y., Liu, H., Jiang, X., Toloubidokhti, M., Wang, L.: A spatial-temporally adap-
tive pinn framework for 3d bi-ventricular electrophysiological simulations and pa-
rameter inference. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 163–172. Springer (2023)

25. Zhou, Y., He, Y., Wu, J., Cui, C., Chen, M., Sun, B.: A method of parameter
estimation for cardiovascular hemodynamics based on deep learning and its appli-
cation to personalize a reduced-order model. International Journal for Numerical
Methods in Biomedical Engineering 38(1), e3533 (2022)


