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Abstract. Active learning (AL) can reduce annotation costs in surgical
video analysis while maintaining model performance. However, tradi-
tional AL methods, developed for images or short video clips, are subop-
timal for surgical step recognition due to inter-step dependencies within
long, untrimmed surgical videos. These methods typically select individ-
ual frames or clips for labeling, which is ineffective for surgical videos
where annotators require the context of the entire video for annotation.
To address this, we propose StepAL, an active learning framework de-
signed for full video selection in surgical step recognition. StepAL inte-
grates a step-aware feature representation, which leverages pseudo-labels
to capture the distribution of predicted steps within each video, with an
entropy-weighted clustering strategy. This combination prioritizes videos
that are both uncertain and exhibit diverse step compositions for anno-
tation. Experiments on two cataract surgery datasets (Cataract-1k and
Cataract-101) demonstrate that StepAL consistently outperforms exist-
ing active learning approaches, achieving higher accuracy in step recog-
nition with fewer labeled videos. StepAL offers an effective approach
for efficient surgical video analysis, reducing the annotation burden in
developing computer-assisted surgical systems.
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1 Introduction

Automated surgical step recognition is critical for real-time surgical assistance
[15], objective skill assessment [32], automated report generation [33], and im-
proved training curricula [7]. Annotated videos are necessary to develop algo-
rithms for automated surgical step recognition, but reliable annotations are ex-
pensive because they require significant effort by trained experts [24,25,23,26].

Techniques such as active learning (AL) [20,16,17] can address the chal-
lenge of limited annotations by iteratively selecting the most informative and
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diverse surgical videos for annotation, minimizing labeling costs while maxi-
mizing model performance. Existing AL methods for recognition predominantly
focus on image-level [22,13] or single-label short video clip classification [27,28].
Common strategies include uncertainty sampling [30,31,19], diversity sampling
[22,2,18], heuristic approaches [6], and ensemble models [10].

While effective in their respective domains, existing AL techniques are not
directly transferable to the complexities of long, multi-step surgical videos. A
fundamental challenge is the granularity mismatch: frame- or clip-level selection
conflicts with the practical need for complete, multi-step video annotation in sur-
gical procedures. Due to the inherent sequential dependencies between surgical
steps [14,32,5], individual clips often lack sufficient context for accurate labeling.
As a result, partial video annotations are ineffective, as the entire video must
be reviewed to ensure contextual accuracy. Standard AL methods typically op-
erate directly on unlabeled training inputs, individual clips in the case of video
recognition, which can lead to suboptimal performance for surgical videos that
require step-level information embedded across sequential clips.

Standard AL strategies also often overlook the structural and temporal infor-
mation implicitly available in pseudo-labels. While pseudo-labels may be imper-
fect, particularly in early AL cycles, they provide a valuable approximation of the
step distribution within a video. This approximation offers a more informative
selection signal than treating all clips equally, which is the implicit assumption in
methods that rely solely on clip-level averaging. Furthermore, AL must account
for both uncertainty and diversity, ensuring that the uncertainty-based selection
process does not lead to redundant sample selection.

StepAL addresses these challenges with two key components. The Step-aware
Feature Representation (SFR) captures inter-step dependencies by encoding the
distribution of surgical steps within each video, leveraging pseudo-labels pre-
dicted by the step recognition model. This step-specific representation allows
the selection process to effectively distinguish between different surgical videos
based on their step composition. Complementing this, the Entropy-weighted
Clustering (EWC) prioritizes videos exhibiting high overall uncertainty. Criti-
cally, EWC leverages the step-aware representation of SFR, ensuring that the
selected videos are not only uncertain but also represent a diverse range of sur-
gical step sequences. This combined approach ensures that StepAL focuses an-
notation efforts on videos that are both highly uncertain and representative of
the diverse range of step sequences present in the dataset.

To the best of our knowledge, StepAL is the first AL framework specifically
designed for video selection in the context of long, multi-step surgical video step
recognition. It directly addresses the practical constraints and inherent sequential
structure of surgical video data, surpassing the limitations of traditional frame-
or clip-level AL approaches by jointly optimizing for uncertainty and diversity
at the video level.

Our key contributions are:

– We propose a novel active learning framework, StepAL, tailored for surgical
video step recognition, effectively reducing the high annotation costs associ-



StepAL: Step-aware Active Learning for Cataract Surgical Videos 3

ated with labeling hour-long, untrimmed videos while achieving performance
comparable to training using full annotations.

– Specifically, we introduce step-aware feature representations to effectively
capture inter-step dependencies in surgical videos and an entropy-weighted
clustering strategy to jointly prioritize videos with high model uncertainty
and diverse surgical step distributions.

– Through extensive experiments on two publicly available cataract surgery
datasets, we demonstrate the effectiveness of StepAL in enabling efficient
and accurate surgical video step recognition.

2 The StepAL Method
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Fig. 1. Overview of our proposed StepAL framework. Given long, untrimmed surgical
videos as unlabeled data, StepAL employs a hybrid AL approach that selects informa-
tive samples based on both uncertainty and representativeness. Step-aware represen-
tations are obtained by concatenating prototypes from clip-level features of different
pseudo-labels. Video-level uncertainty is measured by averaging clip-level entropies.
Finally, entropy-weighted clustering selects videos closest to cluster centers, striking a
balance between the diversity and uncertainty of the selected videos for annotation.

We introduce StepAL, an AL framework designed for efficient step recog-
nition in long, untrimmed surgical videos. Our framework addresses the core
challenge of minimizing annotation costs while maximizing model performance
in multi-step procedures. Let D = {Vn}Nn=1 denote a surgical video dataset com-
prising N videos. We partition D into a labeled set, DL, and an unlabeled set,
DU . The AL process iteratively selects videos from DU for annotation by an
expert (e.g., a surgeon) and adds them to DL to retrain the step recognition
model.
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Algorithm 1 StepAL: Active Learning for Multi-step Surgical Videos
Require: Dataset D, initial labeled set DL, unlabeled set DU , total AL cycles R,

budget per cycle b, number of classes C.
1: for cycle r = 1 to R do
2: Train classifier F (·; θ) on DL.
3: for each video V ∈ DU do
4: Infer clip-level logits ℓt ∈ RC and features ϕt ∈ RD.
5: Compute pseudo-labels ŷt = argmaxc (ℓt)c for all clips t.
6: Construct step-aware representation zV (Eq. 3).
7: Compute video entropy E(V ) (Eq. 5).
8: end for
9: Perform Weighted KMeans on {zV } with weights {E(V )} (Eq. 6).

10: Select top-b videos Q ⊆ DU nearest to each cluster center.
11: Annotate all clips of videos in Q; update DL ← DL ∪Q and DU ← DU \ Q.
12: end for
13: return Final labeled set DL and trained model F (·; θ).

Overall Pipeline. Algorithm 1 provides an overview of the StepAL procedure.
The process begins by training a step recognition model, F (·; θ), on the avail-
able labeled data, DL. For each unlabeled video, V ∈ DU , we compute clip-level
logits, ℓt ∈ RC , and extract corresponding feature embeddings, ϕt ∈ RD, where
C represents the number of distinct surgical steps and D denotes the dimen-
sionality of the feature space. Pseudo-labels, ŷt = argmaxc(ℓt)c, are generated
for each clip based on the model’s predictions. These pseudo-labels are then
used to construct a step-aware feature representation, zV ∈ RC×D (detailed in
Sec. 2.1), which captures the distribution of predicted steps within the video.
Concurrently, a video-level entropy, E(V ), is computed by averaging the clip-
level probability distributions and calculating the resulting entropy (Sec. 2.2).
This entropy serves as a measure of the model’s overall uncertainty for the given
video. The core of the active learning selection strategy lies in applying weighted
KMeans clustering to the set of step-aware feature representations, {zV }, using
the corresponding video entropies, {E(V )}, as sample weights. This strategically
biases the clustering towards videos exhibiting higher uncertainty. A predefined
budget, b, determines the number of videos selected; specifically, those closest to
the cluster centers are chosen for full annotation. These newly annotated videos
are then incorporated into the labeled set, DL, and the unlabeled set, DU , is
updated accordingly. The entire process is repeated for a predetermined number
of active learning cycles, R.

2.1 Step-aware Feature Representation

Surgical procedures inherently consist of a sequence of distinct steps, each pos-
sessing unique visual and temporal characteristics. Traditional approaches that
rely on simple feature averaging across all clips within a video discard this cru-
cial step-specific information. To mitigate this limitation, we introduce a step-
aware feature representation. This representation organizes clip-level embeddings
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according to their predicted surgical steps, thereby preserving the subtle, yet
significant, differences between the various steps of a surgical procedure. This
preservation of step-specific information is critical for enabling a more diverse
and informative selection of videos during the active learning process.

For each unlabeled video, V ∈ DU , composed of T clips {x1, x2, . . . , xT }, we
extract clip-level features, ϕt ∈ RD, and generate corresponding pseudo-labels,
ŷt ∈ {1, . . . , C}. We define the set I(c)V as the indices of clips predicted to belong
to step c:

I
(c)
V =

{
t | ŷt = c

}
. (1)

For each surgical step c, a step-specific feature, f (c)
V , is computed as follows:

f
(c)
V =


1

|I(c)V |

∑
t∈I

(c)
V

ϕt, if I(c)V ̸= ∅,

faverage(V ), otherwise,

(2)

where faverage(V ) represents the global average of ϕt across all clips in video
V . This ensures that all surgical steps, even those not predicted in a particular
video, are represented in the final feature vector. Each f

(c)
V is then ℓ2-normalized,

and these normalized vectors are concatenated to form the final step-aware rep-
resentation, zV :

zV =
[
f̃
(1)
V ∥ f̃

(2)
V ∥ . . . ∥ f̃

(C)
V

]
, f̃

(c)
V =

f
(c)
V∥∥ f (c)

V

∥∥
2
+ ϵ

. (3)

The resulting step-aware representation, zV ∈ RC×D, effectively encodes the
distribution of predicted steps within each video. By maintaining distinct feature
representations for each predicted step, zV captures the inherent compositional
diversity of multi-step surgical procedures, a crucial factor for effective active
learning.

2.2 Entropy-weighted Clustering

In conjunction with the step-aware feature representation, we employ a strategy
to prioritize videos with high model uncertainty. For each unlabeled video, V ,
we quantify this uncertainty using a video-level entropy measure. Given the
logit vector, ℓt ∈ RC , for clip t, and its corresponding softmax probabilities,
pt = softmax(ℓt), we first compute the clip-level entropy:

H(pt) = −
C∑

c=1

p
(c)
t log(p

(c)
t + ϵ). (4)

Then, the video-level entropy, E(V ), is calculated by averaging the clip-level
entropies across all T clips in the video:
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E(V ) =
1

T

T∑
t=1

H(pt) = − 1

T

T∑
t=1

C∑
c=1

p
(c)
t log(p

(c)
t + ϵ). (5)

High values of E(V ) indicate that the model is uncertain about the step
assignments within the video, often due to ambiguous surgical steps or complex
transitions. Annotating such videos is expected to yield significant improvements
in model performance.

To achieve a balance between uncertainty and diversity, we utilize weighted
KMeans clustering. This technique operates on the step-aware representations,
{zV }, while incorporating the video entropies, {E(V )}, as sample weights. Let
{ck}bk=1 ⊂ RC×D denote the cluster centers, and α(V ) represent the cluster
assignment for video V . The weighted KMeans objective function is:

min
{ck}

∑
V ∈DU

E(V )
∥∥ zV − cα(V )

∥∥2. (6)

This formulation biases the clustering process towards videos with higher entropy
values, effectively prioritizing the selection of uncertain samples. Following the
clustering process, we select up to b videos – those closest to each cluster center
in the step-aware feature space – for full annotation. This selected set of videos
represents a balance: high uncertainty (due to the entropy weighting) and diverse
step compositions (due to the clustering on the step-aware representation). The
annotated videos are then added to the labeled set, DL, driving the iterative
learning process.

The combination of step-aware feature representations and entropy-weighted
clustering enables StepAL to efficiently identify videos that are both challenging
for the current model and representative of the wide variety of surgical proce-
dures. This targeted approach to active learning minimizes the annotation effort
while maximizing the information gain, ultimately leading to improved accuracy
in surgical step recognition.

3 Experiments and Results

Datasets: We evaluate StepAL on two publicly available cataract surgery video
datasets: Cataract-1k [9] and Cataract-101 [21]. The labeled subset of Cataract-
1k provided by the authors includes 56 videos with a resolution of 1024x768 at
30 fps, annotated with 13 surgical steps. For this dataset, we use 25 videos for
training, 7 for validation, and 24 for testing. Cataract-101 comprises 101 videos
with a resolution of 720x540 at 25 fps, annotated with 10 surgical steps. We
follow the standard split of 50 training, 10 validation, and 40 testing videos.
Following prior work [8,29], all videos are subsampled to 1 fps and resized to
250x250. Model performance is evaluated using frame-wise accuracy, precision,
recall, and Jaccard Index.
Implementation Details: We use a Video Vision Transformer (VideoViT)
base model (‘VideoViT-B/16‘ architecture [1], pre-trained on Kinetics-400 [11]),
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with 16 frames sampled per video (16 x 224 x 224 input clips after resizing). The
model produces 768-dimensional feature embeddings (ϕt) for each clip.

The active learning process starts with an initial labeled set, DL, containing
10% of the training videos. The step recognition model, F (·; θ), is fine-tuned on
DL, then iteratively updated following Algorithm 1. Each cycle (R = 4 total)
selects a new batch from the unlabeled set, DU , using the Step-aware Feature
Representation (Sec. 2.1) and Entropy-weighted Clustering (Sec. 2.2), adding
10% of the total training data to DL. This evaluates model performance up to
50% labeled data utilization. A model trained on the *complete* training set
achieves mean accuracies of 92.01% (Cataract-1k) and 89.47% (Cataract-101),
serving as an oracle performance reference.

Training uses a batch size of 14 on a single NVIDIA A100 GPU, employing
the Adam optimizer [12] (learning rate = 1e-5, β1 = 0.9, β2 = 0.999, weight
decay = 5e-4) and Cross-Entropy Loss.

Dataset Metric Random Margin[3] Entropy[30] Coreset[22] CoreGCN[4] Ours

Cataract-1k

Accuracy 0.5795 0.6245 0.6703 0.6245 0.6679 0.7169 (+4.66%)
Precision 0.5074 0.5299 0.5706 0.5299 0.5868 0.6485 (+6.17%)
Recall 0.4691 0.5008 0.5277 0.5008 0.5242 0.5785 (+5.08%)
Jaccard 0.3028 0.3420 0.3801 0.3420 0.3844 0.4308 (+4.64%)

Cataract-101

Accuracy 0.7859 0.7893 0.7589 0.7613 0.7700 0.8016 (+1.23%)
Precision 0.6937 0.7495 0.7002 0.7100 0.7300 0.7635 (+1.40%)
Recall 0.6791 0.7314 0.6891 0.7040 0.7054 0.7333 (+0.19%)
Jaccard 0.5404 0.5877 0.5376 0.5411 0.5495 0.5977 (+1.00%)

Table 1. Performance Metrics for Two Cataract Surgery Datasets, Cataract-1k [9]
and the Cataract-101 dataset [21] for R = 1. Values in the green indicate the absolute
percentage increase (from the next best result).

Results: Table 1 compares StepAL to state-of-the-art AL methods: Random,
Margin [3], Entropy [30], Coreset [22], and CoreGCN [4]. Coreset focuses on
diversity in feature space; CoreGCN uses a graph convolutional network. StepAL,
however, uniquely integrates both uncertainty and diversity via its step-aware
feature representation (Sec. 2.1) and entropy-weighted clustering (Sec. 2.2).

At AL cycle R = 1, StepAL outperforms all competing methods on both
datasets. On Cataract-1k, StepAL achieves substantial improvements over the
next best performing method, including a 4.66% increase in accuracy and a
4.64% increase in Jaccard index. Gains are also observed on Cataract-101, where
StepAL surpasses the next best method by 1.23% in accuracy and 1.00% in
Jaccard index, reflecting the dataset’s inherent simplicity.

Figure 2 shows StepAL’s consistent advantage across all active learning cy-
cles. Its ability to achieve higher accuracy and Jaccard index from the initial
stages highlights its effectiveness in rapidly identifying the most informative
videos, crucial when annotation resources are limited. On Cataract-101, perfor-
mance converges at later cycles (R = 4) as methods approach the oracle accuracy
of 89.47%; yet, StepAL maintains a performance edge throughout.
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Fig. 2. Comparison of quantitative performance across 5 Active Learning Cycles (R =
0 to 4). (a) Results on Cataract-1k dataset and (b) Results on Cataract-101 dataset.

Ablations: Our ablation study on Cataract-1k, summarized in Table 2, illus-
trates the effectiveness of StepAL’s components. The Random baseline serves as
a benchmark, with the Entropy method improving accuracy by 15.7% over Ran-
dom by selecting videos based on average clip-level entropy, demonstrating the
value of incorporating uncertainty into active learning. In contrast, KMeans un-
derperforms Entropy by 7.3% due to its reliance on averaged clip features, which
obscure essential details. However, ME-KMeans (Maximum Entropy KMeans),
which also uses averaged features but selects the most uncertain video in each
cluster, surpasses both Entropy and KMeans, showing the importance of com-
bining diversity with uncertainty for effective selection..

EWC shows only marginal improvement over KMeans and still lags behind
ME-KMeans, emphasizing that the feature representation is a critical compo-
nent. In stark contrast, Ours (StepAL) integrates step-aware feature represen-
tation (Sec. 2.1) and EWC (Sec. 2.2), outperforming all other methods by signifi-
cant margins. StepAL not only improves accuracy by 5.3% over ME-KMeans but
also enhances precision, demonstrating its robustness through consistent perfor-
mance improvements across all metrics, effectively capturing step-level diversity
and prioritizing overall video uncertainty for more effective video selection.

Metric Random Entropy KMeans ME-KMeans EWC Ours

Accuracy 0.5795 0.6703 0.6245 0.6807 0.6408 0.7169
Precision 0.5074 0.5706 0.5299 0.6157 0.5366 0.6485
Recall 0.4691 0.5277 0.5008 0.5317 0.5123 0.5785
Jaccard 0.3028 0.3801 0.3420 0.3941 0.3491 0.4308

Table 2. Performance Metrics for Ablation using the Cataract-1k[9] dataset.
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4 Conclusion

In this paper, we present StepAL, a novel AL framework designed for the se-
lection of videos to improve surgical step recognition. Unlike traditional AL
methods that focus on individual frames or clips, StepAL selects entire videos
for annotation, aligning better with real-world surgical workflows. Our approach
combines step-aware feature representation, which captures fine-grained step-
level information using pseudo-labels, with entropy-weighted clustering. This
method prioritizes videos that are both highly uncertain and diverse in their step
composition for further labeling. Experiments on two cataract surgery datasets
demonstrate that StepAL consistently outperforms existing active learning ap-
proaches, achieving higher accuracy in step recognition with fewer labeled videos.
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