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Abstract. Accurate multi-class segmentation of the aorta in medical
CT images is essential for the effective diagnosis and treatment of blood
flow abnormalities. However, achieving precise segmentation in multi-
zone remains challenging due to the lack of visible boundaries and the
similarity in intensity between zones. Although existing methods in-
corporate anatomical features such as global geometric constraints and
landmark-based alignment, they often struggle when these features are
difficult to extract, such as in regions with asymmetric deformation or
extreme curvature due to dissection. This limitation of relying solely on
simple anatomical cues underscores the need to learn and model com-
plex anatomical interrelationships for robust segmentation. To overcome
these challenges, we propose a plane detection-based segmentation frame-
work that is constrained by anatomical features and their relationships
to accurately detect planes between zones. Specifically, our method de-
tects planes by localizing centerpoints and regressing the corresponding
normal vectors, while anatomical landmarks further refine the position
and orientation of these planes. Additionally, anatomical regularization
losses enforce geometric consistency among these components, thereby
enhancing both accuracy and stability of the detected planes. The en-
tire framework is implemented as an end-to-end architecture, enabling
efficient learning. The experimental results on the AortaSeg24 dataset
demonstrate that our approach achieves state-of-the-art performance.
Our code is publicly available at https://github.com/jjong0225/ACP.

Keywords: Anatomical constraints · Anatomical regularization · Aorta
multi-class segmentation · Plane detection.

1 Introduction

Aortic segmentation in medical CT images is a critical step in various clini-
cal procedures, particularly for addressing blood flow abnormalities [1–3]. For
successful interventions, detailed structural and functional analysis is essential,
which is achieved by dividing the aorta into multiple zones based on clinically rel-
evant anatomical definitions, such as the Society for Vascular Surgery/Society
⋆ Corresponding author
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Fig. 1. (a) Multi-zone image and label. (b) Previous works (SwinUNETR [6]). (c)
Anatomical definition of multi-zone class boundaries with ground-truth. (d) Proposed
plane detection-based segmentation (Ours).

of Thoracic Surgeons (SVS/STS) zones. [4]. Multi-zone segmentation enables
the automated measurements of the diameters and volumes, which are essential
for accurate device selection, and precise stent placement [5]. Given that these
measurements directly impact treatment efficacy [7], achieving high segmenta-
tion accuracy is paramount [5, 8]. While considerable progress has been made
in aortic segmentation, multi-zone segmentation remains challenging due to the
inherent similarity of class intensities and the lack of clear boundaries between
zones (Fig. 1a, b).

To address these challenges, significant research has leveraged anatomical
knowledge to constrain segmentation outputs in line with expected anatomi-
cal properties [9–15]. Since inter-zone planes are defined by the aortic structure
and its landmarks (Fig. 1c), two primary strategies have emerged: imposing ge-
ometric constraints across zones [5, 9–11] and aligning planes using landmarks
[12–14]. Geometric constraints approaches focus on constraining structural con-
sistency across zones. In the AortaSeg24 challenge [5], A5 employed Skeleton
Recall Loss [16] to ensure connectivity, while A2 applied centerline boundary
Dice [17] to enhance centerline integrity. Conversely, landmark-driven plane ap-
proaches directly define planes by leveraging landmarks and centerlines. The
planes are defined to pass through the detected landmarks while being orthog-
onal to the centerline (Fig. 1c). For example, [12] derived landmarks through
curvature analysis, whereas [13] incorporated an auxiliary network for landmark
prediction. Although these studies resolve visually ambiguous multi-zone bound-
aries, they often struggle to produce accurate segmentation when these features
are poorly extracted such as in regions with asymmetric deformation or extreme
curvature due to dissection [15, 18]. This limitation of relying solely on simple
anatomical cues underscores the need to learn and model complex anatomical
interrelationships for robust segmentation.

In this paper, we propose an anatomically constrained plane detection–based
segmentation framework that ensures accurate, anatomically aligned planes.
Specifically, the framework decomposes the plane into three components: (1)
the centerpoint, which defines its approximate location along the centerline, (2)
landmarks, which serve as anatomical reference points to guide both its loca-
tion and alignment, and (3) the normal vector, which determines its precise
alignment by accounting for the aortic structure. Furthermore, our anatomi-
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cal regularization enforces the geometric relationships among these components.
This guarantees that the predicted planes adhere to the anatomical priors, thus
improving segmentation accuracy. We implemented the entire framework includ-
ing segmentation and plane detection into an end-to-end framework, enabling
efficient learning.

To summarize, the contributions of this study are as follows:

– We propose a novel plane detection–based segmentation framework.
– We introduce an anatomy-constrained plane detection that learns the anatom-

ical components of planes and their geometric relationships.
– We implemented an efficient end-to-end architecture that jointly learns plane

detection and aortic segmentation.
– Our framework outperforms state-of-the-art methods in segmentation accu-

racy on the AortaSeg24 dataset.

2 Anatomically Constrained Plane Detection

We propose an anatomically constrained plane detection-based segmentation
framework. An overview of our framework is illustrated in Fig. 2a. Our frame-
work employs plane detection to address visually ambiguous boundaries by in-
tegrating anatomical constraints. Specifically, we model each plane with three
key components (centerpoints, landmarks, and normal vectors) and learn their
anatomical relationships. The plane position is first estimated using centerpoints
and landmarks extracted from a keypoint detection head (Fig. 2b, Section 2.1).
Then, the normal vector for each plane class, conditioned on the centerpoints
and landmarks of the corresponding class, is estimated via a normal vector re-
gression head (Fig. 2b, Section 2.2). Finally, an anatomical regularization term
is applied to capture the geometric relationship among these components (Fig.
2c, Section 2.3).

2.1 Centerpoint and Landmark Detection

Our framework detects planes using seven arterial branch landmarks and nine
centerpoints derived from their centerline (Fig. 2a). Specifically, landmarks are
identified as the arterial branches closest to the boundary points, while the cen-
terpoints represent the midpoints of the boundaries between adjacent zones.

To obtain keypoints K, composed of landmarks L and centerpoints C, we
adopt a heatmap-based keypoint detection framework following [13]. This ap-
proach estimates keypoints by learning their spatial probability distribution.
Specifically, shared features fshare are passed through a keypoint detection head
(KD Head), composed of convolutional layers, to generate heatmaps for land-
marks hL and centerpoints hC (Fig. 2b). These heatmaps are converted into
trainable keypoint coordinates using keypoint localization, which computes the
weighted mean of the heatmap and the coordinate map r through element-wise
multiplication, as follows:
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Fig. 2. (a) Overview of our framework for plane-based multi-class segmentation, where
multi-zone segmentation is defined by partitioning the predicted unified zone segmen-
tation with detected planes. (b) Plane detection module estimates class-wise planes
using centerpoint and normal vector. The keypoint detection head (KD Head) gen-
erates heatmaps for landmarks and centerpoints, which are then fused with features
and passed to the normal vector regression head (NVR Head) to predict class-specific
normal vectors. (c) Anatomical regularization refines planes by enforcing geometric
constraints among anatomical components. Plane error, visualized as the blue-orange
discrepancy, is quantified by the angle θ between V pred and V CL. Enforcing θ = 90◦

minimizes the error and ensures anatomical consistency.

K =

∑
x,y,z h(x, y, z) · r(x, y, z)∑

x,y,z h(x, y, z)
, (1)

where r(x, y, z) is the spatial coordinates and h(x, y, z) is the heatmap value. To
train the model with heatmaps, we use Gaussian heatmaps centered on keypoints
as ground truth (GT) and optimize the model using focal loss Lkey [14], following
[13].

2.2 Normal Vector Regression

We directly predict the parametric representation of a plane by regressing its
normal vector V = (vx, vy, vz). To ensure that the predicted normal vector aligns
with the centerpoints and anatomical landmarks (Fig. 2b), class-specific normal
vectors are regressed while being conditioned on the corresponding keypoint
heatmap predictions. Specifically, the regression pipeline begins with the shared
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features fshare and keypoint heatmaps (hL and hC) as inputs. These inputs are
cropped around the detected centerpoints, focusing on the regions of interest.
The cropped features are then fed into the normal vector regression head (NVR
Head), which predicts the normal vector Vpred through a series of convolution
layers and fully connected layers (Fig 2b). For training, we minimize the vector
regression loss Lvec, which penalizes the L1 difference between predicted normal
vectors Vpred and GT normal vectors VGT , as follows:

Lvec =
1

Np

Np∑
i=1

∥∥∥Vpred
i −Vgt

i

∥∥∥
1
. (2)

2.3 Anatomical Regularization

To ensure geometric consistency across predicted plane components, we intro-
duce an anatomical regularization. This regularization leverages the anatomical
definition of multi-zone regions, where the centerpoint and landmark vector of
each plane are constrained to lie on that plane defined by the normal vector
(Fig. 2c).

Specifically, we first convert the heatmap into landmark and centerpoint co-
ordinates using (1). We then compute the centerpoint–landmark vector VCL by
subtracting the centerpoint from the landmark and normalizing it. Finally, we
measure the orthogonality between the VCL and the Vpred using cosine sim-
ilarity, which is incorporated into the anatomical regularization loss Lreg, as
follows:

Lreg =
1

Np

Np∑
i=1

(
VCL

i ·Vpred
i

)2

. (3)

Minimizing Lreg enforces geometrical consistency among the plane’s compo-
nents, preserving anatomical structure and enabling accurate segmentation.

2.4 End-to-End Architecture

We implemented an end-to-end architecture that jointly trains plane detection
and aortic segmentation. The process begins with a shared backbone that ex-
tracts shared features, fshare, which are then fed to task-specific modules for
plane detection and segmentation. By jointly learning from a shared representa-
tion, each module remains independent in its predictions while leveraging shared
information, enhancing efficiency and consistency across tasks. We employ Swi-
nUNETR [6] as the shared backbone and segmentation framework for unified
zone class and 13 artery classes. Following its original implementation, the model
optimizes a segmentation loss Lseg combining Dice loss [14] and Focal loss [19].
All losses are integrated into a joint loss formulation, as follows:

Ltotal = Lseg + λkeyLkey + λvecLvec + λregLreg, (4)

where λkey, λvec, and λreg are weighting coefficients for Lkey, Lvec, and Lreg,
respectively.
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3 Experiments

Experiments were conducted on the AortaSeg24 Challenge dataset [5], the only
publicly available benchmark for multi-class segmentation of aortic structures in
CTA scans. The dataset is divided into 40 training and 10 test cases. All images
were resampled to an isotropic resolution of 1mm³, intensity-normalized to [0,1],
and cropped using labels. Additional labels for plane parameters are derived
using the centroid and principal component analysis (PCA) of class boundary
points. The derived ground truth (GT) plane parameters effectively characterize
the segmentation structure, achieving a Dice Similarity Coefficient [20] of 0.9732
for the segmentation obtained through plane-based separation. During the test
phase, this separation process involves refining the predicted segmentation by
extracting the largest connected component, followed by partitioning into subre-
gions based on the predicted plane parameters. Each subregion is then assigned
a class label corresponding to its associated plane.

All models, including our proposed method and competing baselines, were
trained from scratch without any pre-training, under identical conditions and
rigorously tuned to ensure fair comparison.

3.1 Evaluation Metrics

We evaluate segmentation performance using the Dice Similarity Coefficient
(DSC), the 95th percentile hausdorff distance (HD95), and the average sym-
metric surface distance (ASSD). DSC quantifies the overlap ratio between the
predicted and GT segmentations, providing a measure of overall segmentation
accuracy. In contrast, HD95 and ASSD assess surface-based errors, capturing
the geometric discrepancy between predicted and GT planes.

Additionally, to assess clinical adaptability, we include diameter measure-
ments, which are crucial for applications such as surgical planning, device selec-
tion, and minimally invasive interventions [21]. Specifically, we define the diam-
eter error (DE) as the absolute difference in distance between the predicted and
GT diameters, measured in millimeters (mm).

3.2 Experimental Results

For evaluation, we compare two widely used segmentation models (3D U-Net [22]
and SwinUNETR [6]) along with three aortic segmentation models (CIS-UNet
[23], A5 [5], an nnU-Net [24] variant model with geometric constraints, and M-
SL [13], a landmark-driven plane approach). Table 1 presents the quantitative
segmentation performance, reporting the mean values of DSC, HD95, ASSD,
and DE. Our method outperforms the baseline SwinUNETR and multiple state-
of-the-art (SOTA) approaches, demonstrating superior segmentation accuracy,
surface delineation, and clinical applicability.

Our model improves DSC by 10.5% over the baseline and by 6% over CIS-
UNet, the best-performing method for DSC, demonstrating consistently higher
segmentation accuracy. Beyond DSC, our method reduces HD95 by 33% and
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Table 1. Segmentation performance comparison (mean ± std). Higher is better for
DSC (↑); lower is better for HD95, ASSD, and DE (↓).

Method DSC ↑ HD95 ↓ ASSD ↓ DE ↓
3D U-Net [22] 0.729 ± 0.064 8.875 ± 2.98 2.444 ± 0.79 6.328 ± 1.83
SwinUNETR [6] 0.718 ± 0.057 9.044 ± 3.00 2.484 ± 0.76 5.471 ± 2.03
CIS-UNet [23] 0.748 ± 0.063 8.360 ± 2.77 2.249 ± 0.75 4.810 ± 1.86
A5 [5] 0.750 ± 0.045 7.587 ± 2.45 2.156 ± 0.57 3.992 ± 1.18
M-SL [13] 0.732 ± 0.060 8.483 ± 2.18 2.266 ± 0.64 3.453 ± 1.40
Ours 0.793 ± 0.039 5.990 ± 2.06 1.745 ± 0.43 3.016 ± 1.11

Table 2. Zone-wise DSC performance for each zone, denoted as Zi, where i represents
the zone index.

Method Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

3D U-Net [22] 0.919 0.619 0.712 0.706 0.715 0.858 0.668 0.599 0.635 0.855
SwinUNETR [6] 0.905 0.597 0.729 0.720 0.749 0.869 0.520 0.587 0.625 0.879
CIS-UNet [23] 0.926 0.656 0.719 0.667 0.748 0.882 0.648 0.661 0.689 0.884
A5 [5] 0.895 0.592 0.709 0.693 0.796 0.884 0.690 0.654 0.680 0.903
M-SL [13] 0.908 0.613 0.717 0.705 0.783 0.863 0.577 0.608 0.678 0.866
Ours 0.924 0.666 0.752 0.726 0.827 0.900 0.759 0.731 0.740 0.908

ASSD by 31% compared to the baseline and by 28% and 22%, respectively,
compared to A5, the best-performing method for surface accuracy. These results
highlight our method’s precise plane detection, reducing noise and improving
segmentation accuracy. Furthermore, DE is reduced by 40% compare to the
baseline and by 24% compared to M-SL, the best-performing method for DE.
This improvement underscores our method’s adaptability to clinical applications
by precisely estimating diameters through accurate and stable plane detection.
The consistently lower standard deviations across all metrics further confirm
that our improvements are not driven by outlier handling, but reflect robust and
consistent performance gains across cases, including those with asymmetric de-
formation or extreme curvature. Table 2 further validates these findings, demon-
strating consistent performance gains across most anatomical zones, except for
Zone 0. Fig. 3 qualitatively illustrates that our method produces accurate plane,
whereas SOTA methods exhibit increased noise and structural inconsistencies.
These results reinforce the effectiveness of our approach in both segmentation
accuracy and clinical reliability.

3.3 Ablation Study of Plane Detection

To assess the impact of individual components in our anatomically constrained
plane detection framework, we performed an ablation study under consistent
experimental settings. The study began with the baseline, followed by progres-
sive additions of key components : (1) landmarks, (2) plane detection, and (3)
anatomical regularization.

Table 3 presents the results, demonstrating that each component incremen-
tally improves segmentation accuracy. The introduction of anatomical landmarks
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Fig. 3. Qualitative comparison of registration methods. The left panel visualizes over-
all zone locations and slice positions for comparison. The right panels present qualita-
tive comparison, with the GT class boundary shown as a white contour. While other
methods exhibit segmentation noise or inaccuracies in plane delineation, our approach
achieves precise segmentation and plane estimation that closely aligns with the GT.

Table 3. Ablation study on our anatomically constrained plane detection framework.

Method DSC ↑ HD95 ↓ ASSD ↓ DE ↓
Baseline (SwinUNETR [6]) 0.7179 9.0437 2.4843 5.4712
+ landmark 0.7205 8.4696 2.3384 3.1487
+ plane detection 0.7682 7.2032 2.0194 3.1319
+ anatomical regularization 0.7932 5.9906 1.7452 3.0159

improves segmentation accuracy by defining a landmark-driven plane, reducing
HD95 by 6.35%, ASSD by 5.87%, and DE by 42.45%. This suggest that lever-
aging anatomical priors effectively delineates ambiguous boundaries, mitigating
noise and inaccuracies. Incorporating plane detection further enhances segmen-
tation by providing spatial priors for both position and orientation, leading to
a 6.62% improvement in DSC. This underscores the effectiveness of integrating
multiple anatomical priors to refine segmentation accuracy. Finally, anatomical
regularization enforces geometric consistency, further reducing HD95 by 16.83%,
ASSD by 13.58% and improving DSC by 3.25%. This suggest that beyond a
simple combination of anatomical cues, modeling the interrelations among plane
components enables more precise and robust segmentation. These results sug-
gest that leveraging anatomical priors guides segmentation toward anatomically
consistent and robust outcomes.

4 Conclusion

We presented an anatomically constrained plane detection-based segmentation
framework for aortic multi-class segmentation. Our framework models the com-
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plex anatomical interrelationships of planes, ensuring not only high segmenta-
tion accuracy but also precise estimation of clinically relevant metrics. While
our current work focuses on multi-zone segmentation of the aorta, future efforts
will extend this methodology to other vascular structures, such as arteries, to
further validate its generalizability and clinical utility.
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