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Abstract. Limited labeled data and domain shifts present significant
challenges for accurate medical image segmentation. Semi-supervised
learning (SSL) and unsupervised domain adaptation (UDA) methods
address these challenges individually. Existing SSL methods do not per-
form well in UDA scenarios, and vice versa. We observe that excelling in
SSL requires effective learning from limited labeled data while avoiding
overfitting, whereas in UDA, the domain gap must be effectively reduced.
To design a novel unified framework that tackles both the scarcity of la-
beled data and domain shift, it is essential to address both objectives.
To accomplish this, we introduce Wavelet Frequency Exchange (WFE),
which decomposes encoder features into low and high-frequency compo-
nents and exchanges high-frequency features between labeled and unla-
beled data. WFE provides two key benefits: it disrupts overfitting by
preventing the model from memorizing details from limited labeled data
in SSL, and it reduces the domain gap in UDA. To improve the rep-
resentation of exchanged features, we propose a Learnable Parametric
Feature Network (LPFN), which includes downsampling and upsampling
blocks. These blocks include Parametric Spline (PS) layers, which map
the relationships between the exchanged features using a spline function.
Evaluations on two publicly available medical datasets demonstrate the
effectiveness of our method.

Keywords: Semi-supervised learning · Unsupervised domain adapta-
tion · Wavelet Frequency Exchange · Medical image segmentation.

1 Introduction

Deep neural networks have significantly advanced the field of medical image
analysis (MIA). Most leading techniques in MIA rely on supervised learning,
which requires labeled data. However, labeling medical data is both costly due
to the need for expert manual annotation and time-consuming, especially for
tasks such as segmentation that require per-pixel labeling [5, 18]. On the other
hand, obtaining unlabeled data is more feasible. As a result, semi-supervised
learning (SSL) has emerged as a valuable paradigm, capable of achieving per-
formance comparable to supervised learning at a lower cost. In SSL, a small
amount of labeled data is used alongside a large volume of unlabeled data [10,
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11]. Several SSL techniques have been developed for medical image segmentation.
Pseudo-labeling [4, 20] and consistency regularization methods [1] are commonly
applied in this context. Bai et al. [1] use bidirectional copy-pasting between la-
beled and unlabeled data to effectively enhance learning from labeled samples.
VCLIPSeg [13] integrates CLIP embeddings in a voxel-wise manner to learn se-
mantic relationships among pixels. However, these methods assume that labeled
and unlabeled data come from the same distribution. In practice, medical images
collected from different medical centers using various scanning systems often ex-
hibit significant domain shifts [12]. As a consequence, current approaches have
limited applicability in real-world scenarios.

To address the challenges of domain shift, researchers have increasingly adopted
unsupervised domain adaptation (UDA) techniques. UDA aims to bridge the gap
between labeled (source domain) and unlabeled data (target domain) [15]. Previ-
ously, SSL and UDA were addressed as distinct challenges. However, since both
frameworks involve learning from both labeled and unlabeled data, it is natural
to develop a unified solution that effectively manages both scenarios. Existing
SSL approaches are not well-suited for UDA, and vice versa [23, 21]. Developing
an architecture that performs effectively well in both situations is a substan-
tial challenge. Wang et al. [23] developed a framework for volumetric SSL that
addresses both SSL and UDA tasks through aggregation and decoupling frame-
work.

To design a unified framework that effectively handles both scarcity of labeled
data and domain shift, we must address two key challenges: (1) Overfitting
with limited labeled data: SSL relies on a small set of labeled data. However,
with limited ground truths available, models tend to overfit to this labeled set,
hindering generalization. (2) Minimizing the domain gap in UDA: Reducing the
domain gap is a non-trivial task, especially when there is a significant domain
shift, such as between MRI and CT modalities. If we can develop a framework
that simultaneously tackles both challenges, we will achieve a unified solution
that enhances performance in both SSL and UDA settings.

To achieve both objectives, we introduce Wavelet Frequency Exchange (WFE).
WFE decomposes the encoder features into low (LF) and high-frequency (HF)
coefficients using discrete wavelet transform (DWT). The Inverse Discrete Wavelet
Transform (IDWT) is then used to reconstruct the spatial features from their
wavelet coefficients. During the reconstruction step, the low-frequency coeffi-
cients are preserved, while the high-frequency coefficients are exchanged between
the labeled and unlabeled features. In this way, WFE effectively mixes the high-
frequency features of the labeled and unlabeled data. To further improve the
representation of exchanged features, we propose the learnable Parametric Fea-
ture Network (LPFN), which includes LPFN downsampling (LPFN-DB) and
upsampling (LPFN-UB) blocks. LPFN-DB efficiently captures relationships be-
tween the exchanged features by first converting the features into patches, then
modeling these relationships using Parametric Spline (PS) layers. During down-
sampling, it progressively captures features at different scales, while LPFN-UB
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Fig. 1: Overview of our proposed framework: We utilize a co-training framework
to learn from both labeled and unlabeled data. Each model processes images
that have undergone distinct augmentation methods.

reconstructs spatial details using PS layers. This strategy enhances the overall
representation of the exchanged features.

Our proposed approach achieves the first objective by incorporating high-
level features from unlabeled data into the labeled data. Overfitting often occurs
in SSL when the model memorizes specific details of the limited labeled data.
By exchanging high-frequency components, we disrupt this direct memorization
of intricate details, forcing the model to focus on broader, more generalizable
patterns rather than on the specific features of the labeled data. We achieve the
second objective by leveraging the fact that high-frequency features often cap-
ture domain-specific details, such as edges, textures, and fine structures. Swap-
ping these features forces the model to learn representations that are consistent
across both domains. As a result, the model becomes less sensitive to the spe-
cific characteristics of either domain and more focused on shared, generalizable
features.

2 Methodology

2.1 Preliminaries

In this problem, we are provided with two datasets: labeled data 𝐷𝑙 = {(𝑥𝑙
𝑖
, 𝑦𝑖)}𝑁𝑖=1

and unlabeled data 𝐷𝑢 = {𝑥𝑢
𝑖
}𝑀
𝑖=1. Here, 𝑁 indicates the total number of labeled

images, while 𝑀 denotes the total number of unlabeled images. Each image 𝑥𝑖 be-
longs to R𝐻×𝑊×𝐷, and each corresponding label 𝑦𝑖 is represented in R𝐻×𝑊×𝐷×𝐶 ,
where 𝐶 is the number of possible classes. In SSL, both labeled and unlabeled
data originate from the same domain, whereas in UDA, the labeled data and
unlabeled data come from different domains. Our objective is to develop a deep
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learning model 𝑓 (.) that effectively utilizes both labeled and unlabeled data to
address both scenarios in a unified approach.

2.2 Learning Framework and Loss Functions

Our method consists of two models with the same architecture, 𝑓 (𝑥𝑙 , 𝑥𝑢, 𝜃) and
𝑓 (𝑥𝑙 , 𝑥𝑢, 𝜓). To enhance diversity between the models, each receives images that
have undergone distinct augmentation methods. Both models generate predic-
tions for labeled and unlabeled data and are trained using both supervised and
unsupervised losses, as shown in Figure 1. For both kinds of losses, we employ
conventional dice and cross-entropy loss functions. The supervised loss for both
models is formulated as follows:

𝐿 𝜃sup =
1

𝑁

𝑁∑︁
𝑖=1

LDiceCE (𝑝𝑙;𝜃𝑖 , 𝑦𝑖), 𝐿
𝜓
sup =

1

𝑁

𝑁∑︁
𝑖=1

LDiceCE (𝑝𝑙;𝜓𝑖 , 𝑦𝑖) (1)

where LDiceCE (𝑥, 𝑦) = 1
2 (Ldice (𝑥, 𝑦) + LCE (𝑥, 𝑦)) represents the Dice loss and

cross-entropy loss, respectively. 𝑝𝑙;𝜃 and 𝑝𝑙;𝜓 are the predictions for labeled data
from the models 𝑓 (·; 𝜃) and 𝑓 (·;𝜓), respectively.

For unlabeled data we utilize the cross-pseudo supervision [4] approach where
each model generates pseudo-labels for the unlabeled data and then uses these
pseudo-labels to provide supervision to the other model. The prediction of the
model 𝑓 (·; 𝜃) for an unlabeled image is denoted by 𝑝𝑢;𝜃 , and the pseudo-label
it produces is given by 𝑝𝑢;𝜃 = argmax(𝑝𝑢;𝜃 ), where argmax returns the index of
the maximum value. Similarly, the prediction of the model 𝑓 (·;𝜓) for unlabeled
data is denoted by 𝑝𝑢;𝜓, and its pseudo-label is 𝑝𝑢;𝜓. The unsupervised loss for
both models is formulated as follows:

𝐿 𝜃unsup =
1

𝑀

𝑀∑︁
𝑖=1

LDiceCE (𝑝𝑢;𝜃𝑖 , 𝑝
𝑢;𝜓
𝑖

), 𝐿
𝜓
unsup =

1

𝑀

𝑀∑︁
𝑖=1

LDiceCE (𝑝𝑢;𝜓𝑖 , 𝑝
𝑢;𝜃
𝑖

) (2)

2.3 Framework Overview

Our model is based on an encoder-decoder convolutional neural network archi-
tecture. Specifically, the function 𝑓 (·) can be decomposed into two components:
𝐸 (·), the encoder, and 𝐷 (·), the decoder. The encoder 𝐸 (·) is responsible for
extracting hierarchical features from the input data, while the decoder 𝐷 (·) re-
constructs the output from the compressed features produced by the encoder.
The feature maps generated by the encoder’s last convolutional block for labeled
data, denoted as 𝑧𝑙, and for unlabeled data, denoted as 𝑧𝑢, are utilized in the
Wavelet Frequency Exchange (WFE) process, as shown in Figure 2.
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Fig. 2: Detailed architecture of our framework

2.4 Wavelet-Based Frequency Exchange

WFE uses the discrete wavelet transform (DWT) with the Haar wavelet to de-
compose the encoder features into low- and high-frequency coefficients. For a 3D
feature 𝑧, this process yields eight distinct frequency coefficients, as illustrated
below:

𝐿𝐿𝐿, {𝐿𝐿𝐻, 𝐿𝐻𝐿, 𝐿𝐻𝐻, 𝐻𝐿𝐿, 𝐻𝐿𝐻, 𝐻𝐻𝐿, 𝐻𝐻𝐻} = DWT(𝑧) (3)

The low-frequency component 𝐿𝐿𝐿 represents the smoothed, low-frequency
approximation of the 3D features, capturing general patterns and structures. In
contrast, the remaining seven high-frequency (HF) coefficients capture detailed
information across various dimension combinations, emphasizing finer features
and edges in the data. First, the labeled and unlabeled features, 𝑧𝑙 and 𝑧𝑢,
are passed through the DWT function, as shown in Equations 4. This process
decomposes each feature into its LF and HF coefficients. The IDWT is then used
to reconstruct the spatial features from their wavelet coefficients. During the
reconstruction step, the LF coefficients are preserved, while the HF coefficients
of the labeled features are exchanged with those of the unlabeled features, and
vice versa, as illustrated in Equations 5.

𝐿𝐹𝑙 , 𝐻𝐹𝑙 = DWT
(
𝑧𝑙
)
, 𝐿𝐹𝑢, 𝐻𝐹𝑢 = DWT (𝑧𝑢) (4)

𝑧̃𝑙 = IDWT
(
𝐿𝐹𝑙 , 𝐻𝐹𝑢

)
, 𝑧̃𝑢 = IDWT

(
𝐿𝐹𝑢, 𝐻𝐹𝑙

)
(5)

The modified labeled 𝑧̃𝑙 and unlabeled features 𝑧̃𝑢 are then passed to the
LPFN translation block for further processing.

2.5 Learnable Parametric Feature Network

The Learnable Parametric Feature Network (LPFN) consists of two LPFN blocks:
the LPFN Downsampling Block (LPFN-DB) and the LPFN Upsampling Block
(LPFN-UB). LPFN-DB performs spatial downsampling of the feature maps,
reducing their resolution while preserving essential information. LPFN-UB in-
creases the spatial resolution of the feature maps, aiding in the reconstruction
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of high-resolution outputs. For brevity, we have omitted the labeled (𝑙) and
unlabeled (𝑢) superscripts from this point onward.
LPFN Downsampling Block: LPFN-DB consists of three major components:
the Patch Embedding operation (PatchEmbed); Parametric Spline (PS) layer;
and the Depthwise Convolution layer (DepthConv). The PatchEmbed operation
reshapes the wavelet-exchanged features 𝑧̃ into sequences of flattened 2D patches.
Each patch is then linearly projected to a new space, which can be effectively
implemented as a convolution operation with a kernel size matching the patch
size [26]. By dividing an image into patches, the model can focus on capturing
local patterns and textures, which aids in learning fine-grained details. The out-
put obtained from PatchEmbed operation 𝑧𝑑 is passed to PS layer, as shown in
Equation 6.

The Parametric Spline (PS) layer in the LPFN network transforms input
features by using a combination of two components: a residual function and a
spline-based function. More specific details of the parametric spline layer are
provided in Section 2.6. The output of PS layer is passed to DepthConv module.
DepthConv [2] is utilized to perform convolution independently on each channel
of the feature maps. Consequently, the number of parameters and computations
is significantly reduced. The overall output of the LPFN-DB is formalized as
follows:

𝑧𝑑 = PatchEmbed( 𝑧̃) (6)
𝑧′𝑑 = DepthConv(PS(𝑧𝑑), . . . , 𝐾) (7)
𝑧′′𝑑 = 𝑧𝑑 + 𝑧′𝑑 (8)

The Equation 8 represents the residual connection, where the output of the
PatchEmbed operation 𝑧𝑑 is added to the output of the combined PS layers
and DepthConv outputs 𝑧′

𝑑
. This residual connection helps preserve the origi-

nal information and facilitates better gradient flow during training. Finally, 𝑧′′
𝑑

is passed to Layer Normalization (LN) to stabilize and accelerate training, as
shown in Figure 2. The symbol 𝐾 represents the number of PS layers. We will
obtain two sets of features from the LPFN-DB block: labeled features 𝑧𝑙

′′

𝑑
and

unlabeled features 𝑧𝑢′′
𝑑

.

LPFN Upsampling Block: The LPFN-UB consists three major components:
the upsampling operation Upsample ; the PS layer; the DepthConv layer (Depth-
Conv).

𝑧𝑒 = BlockUp(𝑧′′𝑑 ) (9)
𝑧′𝑒 = LN (DepthConv(PS(𝑧𝑒), . . . , 𝐾)) (10)

The Upsample operation (BlockUp) enlarges the feature map 𝑧′′
𝑑

to a higher
resolution. The skip connections are also integrated in this block, it introduces
high-resolution details from earlier layers of LPFN-DB. Finally, the LPFN layer
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Table 1: Comparison of the proposed approach with other approaches on the LA
dataset using 5 and 10 percent labeled data.

Method Scans used Metrics Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓ Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

VNet 4(5%) 0 52.55 39.60 47.05 9.87 8(10%) 0 82.74 71.72 13.35 3.26
UA-MT [28]

4(5%) 76(95%)

82.26 70.98 13.71 3.82

8(10%) 72(90%)

87.79 78.39 8.68 2.12
DTC [17] 81.25 69.33 14.90 3.99 87.51 78.17 8.23 2.36

SASSNet [14] 81.60 69.63 16.16 3.58 87.54 78.05 9.84 2.59
MC-Net [25] 83.59 72.36 14.07 2.70 87.62 78.25 10.03 1.82
SS-Net [24] 86.33 76.15 9.97 2.31 88.55 79.62 7.49 1.90

BCP [1] 88.02 78.72 7.90 2.15 89.62 81.31 6.81 1.76
MLRPL [19] - - - - 89.86 81.68 6.91 1.85

VCLIPSeg [13] 88.51 79.49 10.48 2.28 90.59 82.87 6.22 1.61
Genericssl [23] 89.93 81.82 5.25 1.86 90.31 82.40 5.55 1.64

Ours 90.62 82.63 5.16 1.64 91.53 84.40 4.82 1.63

and DepthConv operation, followed by Layer Normalization, process the feature
map to capture significant features and stabilize training. We will obtain two sets
of features after the LPFN-UB block: labeled features 𝑧𝑙′𝑒 and unlabeled features
𝑧𝑢

′
𝑒 , as shown in Figure 2.

2.6 Parametric Spline Layer

For an input 𝑥, the parametric spline function is expressed as:

𝑃𝑆(𝑥) = (Φ𝐾−1 ◦Φ𝐾−2 ◦ · · · ◦Φ0) (𝑥)

In this structure, each layer applies a transformation, Φ𝑘 , to the input 𝑥𝑘 to
generate the output for the next layer, 𝑥𝑘+1, which can be written as:

𝑥𝑘+1 = Φ𝑙 (𝑥𝑘) =
©­­«
𝜙𝑘,1,1 () · · · 𝜙𝑘,1,𝑛𝑘 ()

...
. . .

...

𝜙𝑘,𝑛𝑘+1 ,1 () · · · 𝜙𝑘,𝑛𝑘+1 ,𝑛𝑘 ()

ª®®¬ 𝑥𝑘
Each activation function 𝜙 is represented by a spline [16], enabling a flexible and
expressive modeling capability for the inputs.

Inspired by [16], we utilize parametric spline function with B-splines. The ap-
proach involves incorporating residual activation functions, where the activation
function 𝜙(𝑥) is represented as:

𝜙(𝑥) = 𝑤𝑏𝑏(𝑥) + 𝑤𝑠spline(𝑥)
Specifically, 𝑏(𝑥) is chosen as silu(𝑥) = 𝑥

1+𝑒−𝑥 , while spline(𝑥) is defined as a
linear combination of B-splines with trainable coefficients 𝑐𝑖, as shown below:

spline(𝑥) =
∑︁
𝑖

𝑐𝑖𝐵𝑖 (𝑥)

In our method, we further employ exponential moving average (EMA) on the
weights 𝑤𝑏, 𝑤𝑠 and 𝑐𝑖, for smoother gradient flow.
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Table 2: Comparison of the proposed method with other approaches on the
MMWHS dataset for the MR to CT and CT to MR setting.

MR To CT CT To MR
Method Dice ↑ ASD ↓ Dice ↑ ASD ↓

AA LAC LVC MYO Avg Avg AA LAC LVC MYO Avg Avg
PnP-AdaNet [6] 74.0 68.9 61.9 50.8 63.9 12.8 43.7 68.9 61.9 50.8 63.9 8.9
AdaOutput [22] 65.2 76.6 54.4 43.6 59.9 9.6 60.8 39.8 71.5 35.5 51.9 5.7
CycleGAN [29] 73.8 75.7 52.3 28.7 57.6 10.8 64.3 30.7 65.0 43.0 50.7 6.6
CyCADA [8] 72.9 77.0 62.4 45.3 64.4 9.4 60.5 44.0 77.6 47.9 57.5 7.9

SIFA [3] 81.3 79.5 73.8 61.6 74.1 7.0 65.3 62.3 78.9 47.3 63.4 5.7
DSAN [7] 79.9 84.8 82.8 66.5 78.5 5.9 71.3 66.2 76.2 52.1 66.5 5.4

LMISA-3D [9] 84.5 82.8 88.6 70.1 81.5 2.3 60.7 72.4 86.2 64.1 70.8 3.6
Genericssl [23] 93.2 89.5 91.7 86.2 90.1 1.7 62.8 87.4 61.3 74.1 71.4 7.9

Ours 92.3 93.5 91.7 92.6 92.5 1.4 69.8 77.3 73.9 76.6 74.4 6.1

3 Experiments

Datasets. We conducted experiments on a semi-supervised benchmark dataset,
namely Left Atrium [27], and a domain adaptation dataset, namely MMWHS
[30], under two scenarios: CT to MR and MR to CT. The LA dataset consists
of 100 scans, with 80 scans used for training and 20 for evaluation. The labeled
dataset is used for validation during training to select the optimal model. The
MMWHS dataset contains CT and MRI images of the same anatomical regions,
with 20 images for each modality.
Comparison with SOTA Methods for SSL and UDA To thoroughly as-
sess our approach in tackling SSL, we compare it against several state-of-the-art
(SOTA) methods, as presented in Tables 1. Our method consistently achieves
superior performance across different SSL datasets. Likewise, for UDA, we eval-
uate our approach against SOTA techniques. As shown in Tables 2, our method
surpasses existing approaches.
Architecture Ablation. In this section, we highlight the significance of differ-
ent architectures. The first row in Table 3 presents the results of the co-training
approach, as illustrated in Figure 1, which excludes the WFE and LPFN blocks.
We then incorporate the WFE, with the features obtained from this stage being
processed through a single convolution block before being fed into the decoder
WFE-a. Next, we implement the WFE-ConvBlock, which utilizes a convolutional
translation block similar to the LPFN translation block, except that the LPFN
layers are replaced with convolutional layers. Finally, we present the results
achieved with the LPFN translation block, which shows a 19.04 % improvement
over the co-training framework.

4 Conclusion

In this work, we propose a novel unified approach to address the challenges
of limited labeled data and domain shift. Our approach introduces the WFE
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Table 3: Ablation study on using different architectures in our approach over the
MMWHS dataset in the MR-to-CT setting.

Co-training WFE-a WFE-ConvBlock WFE-LPFN Block Dice ↑ ASD ↓
✓ 73.49 6.72
✓ ✓ 80.16 4.32
✓ ✓ 87.32 2.92
✓ ✓ 92.53 1.41

block, which decomposes encoder features into low and high-frequency coeffi-
cients and exchanges HF coefficients between labeled and unlabeled data. To
effectively process these exchanged features, we introduce LPFN, which include
both downsampling and upsampling LPFN blocks. These blocks capture non-
linear patterns within the data using LPFN layers, which are formed by stacking
LPFNs with trainable activation functions and weights updated via exponential
moving averages. Our method mitigates overfitting by preventing the model from
memorizing specific details in SSL and reduces the domain gap in UDA, result-
ing in improved performance in both scenarios.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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