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Abstract. Functional magnetic resonance imaging (fMRI) denoising is
a crucial preprocessing step in neuroimaging studies, as noise degrades
the reliability of downstream analyses. Previous approaches for fMRI de-
noising either rely on predefined noise patterns or train dataset-specific
models, restricting their reliability across various datasets due to inter-
dataset variations in scanner types, scanning protocols, and preprocess-
ing pipelines. Additionally, applying previous approaches to new datasets
requires extensive expert signal/noise annotations. To mitigate this re-
liance, leveraging existing datasets to train sparsely labeled datasets
is a practical solution, but inconsistencies in labeling criteria hinder
effective adaptation. To address these challenges, we propose a meta-
learning-based semi-supervised domain adaptation framework, enabling
the learning of dataset-irrelevant features from sparsely labeled datasets
by leveraging existing labeled datasets with two key components: (1) a
dataset-irrelevant feature extractor trained by meta-learning to capture
noise patterns across multiple datasets, and (2) dataset-specific classi-
fiers optimized by decoupled training to handle inconsistencies in label-
ing criteria. Our proposed approach shows outstanding performance on
four fMRI datasets in both fully labeled and sparsely labeled conditions.

Keywords: fMRI denoising · Meta-learning · Semi-supervised domain
adaptation · Decoupled training · Sparsely labeled data

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the most widely used
neuroimaging techniques for studying functional connectomes in the brain [2,3,13,15].
However, fMRI data are easily affected by noise originating from experimental
environments, scanner artifacts, and non-neuronal physiological fluctuations [7,20,21].
This noise degrades the signal-to-noise ratio (SNR) and reduces the statistical
power of fMRI studies in interpreting brain functions [17]. Thus, fMRI denoising,
which separates neuronal signals from noise, has become an essential preprocess-
ing step for fMRI-based neuroimaging studies [7,8,17].
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Previous approaches for fMRI denoising leverage component-based meth-
ods, such as principal component analysis (PCA) and independent component
analysis (ICA) [11,14,19,22,24]. Particularly, spatial ICA is widely adopted, as
it decomposes fMRI data into independent components (ICs), which consist of
pairs of a 3D spatial map and its corresponding 1D time series, enabling the sep-
aration of noise from fMRI data by classifying ICs as either signal or noise [1,22].
Based on spatial ICA, FIX [24] classifies signal/noise ICs using machine-learning-
based classifiers trained on hand-crafted spatial and temporal features. Recently,
deep learning-based methods [11,14,19] employ convolutional neural networks
(CNNs) [10] for automatic feature extraction and noise classification.

Nevertheless, they either rely on predefined noise patterns [22] or train dataset-
specific models for each dataset [19]. This reliance limits their capacity to learn
noise patterns across diverse datasets due to inter-dataset variations in scan-
ner types, scanning protocols, and preprocessing [28,31]. Thus, reducing inter-
dataset variations is crucial for effectively capturing a wide range of noise pat-
terns across diverse datasets. Furthermore, applying previous approaches to new
datasets requires extensive expert annotations for signal/noise ICs, which de-
mand significant time and cost. To alleviate this burden, leveraging existing
labeled datasets is effective for training new datasets with minimal annotations,
i.e., sparsely labeled datasets [23]. However, labeling criteria for signal/noise an-
notations vary depending on research objectives and expert judgment [7,11,27],
leading to inconsistencies across datasets. Therefore, addressing these inconsis-
tencies is crucial for ensuring effective application to sparsely labeled datasets.

To address these challenges, we propose a novel meta-learning-based semi-
supervised domain adaptation framework for fMRI denoising, enabling the learn-
ing of dataset-irrelevant features from a sparsely labeled dataset by leveraging
existing labeled datasets. To reduce inter-dataset variations, we adopt meta-
learning for the dataset-irrelevant feature extractor that effectively learns
a wide range of noise patterns across multiple well-labeled datasets and a sparsely
labeled dataset. To mitigate inconsistencies in labeling criteria, we introduce de-
coupled training which optimizes the dataset-specific classifiers separately
from the dataset-irrelevant feature extractor, allowing each dataset-specific clas-
sifier to adapt to its respective dataset’s labeling criteria while preserving dataset-
irrelevant feature extraction. Our proposed framework iteratively enhances both
the feature extractor and the classifiers, outperforming previous approaches on
four fMRI datasets under both sparsely labeled and fully labeled settings.

The contributions of this study are summarized as follows:

– We propose a meta-learning-based semi-supervised domain adaptation frame-
work for fMRI denoising, enabling the learning of dataset-irrelevant features
from a sparsely labeled dataset by leveraging existing labeled datasets.

– We introduce decoupled training that optimizes dataset-specific classifiers
separately from the feature extractor to address differences in labeling cri-
teria across datasets while preserving dataset-irrelevant features.

– Our proposed framework achieves state-of-the-art performance across four
fMRI datasets in both fully labeled and sparsely labeled conditions.
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Fig. 1. Overview of our proposed framework for fMRI denoising, which learns dataset-
irrelevant features from a sparsely labeled dataset (a target domain) by leveraging
existing labeled datasets (source domains) with three stages: (A) pretraining for the
feature extractor and classifier, (B) meta-learning for the dataset-irrelevant feature
extractor, and (C) decoupled training for the dataset-specific classifiers.

2 Method

We propose a meta-learning-based semi-supervised domain adaptation frame-
work, which learns dataset-irrelevant features from a sparsely labeled dataset
(a target domain) with existing labeled datasets (source domains). As shown
in Fig. 1, our proposed framework consists of three stages: (A) pretraining for
the feature extractor and classifier, (B) meta-learning for the dataset-irrelevant
feature extractor, and (C) decoupled training for the dataset-specific classifiers.

2.1 Pretraining for the Feature Extractor and Classifier

We train a feature extractor and a classifier using the fully labeled source do-
mains and a labeled set from the target domain to initialize parameters for the
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subsequent meta-learning and decoupled training. We construct the feature ex-
tractor with parameters ω to encode each IC into a feature representation, based
on the CNN-based architecture proposed in [19]. The classifier µ is implemented
as a single-layer fully connected network and predicts whether the feature of the
input IC corresponds to a signal or noise component. We adopt cross-entropy
loss as the classification loss Lcls to train both models. After M training steps,
the feature extractor’s parameters ωM are set as θ0. Similarly, the classifier’s
parameters µM are used to initialize the parameters of the dataset-specific clas-
sifiers ϕ10, . . . , ϕD0 , ψ0, which consist of D + 1 individual classifiers, where each
classifier learns a specific labeling criterion for its respective dataset. Incorpo-
rating labeled data at this stage reduces ambiguity in signal/noise annotations
and offers a stable initialization for subsequent processing stages.

2.2 Meta-learning for the Dataset-Irrelevant Feature Extractor

To effectively extract dataset-irrelevant features, we employ a meta-learning
approach based on Model-Agnostic Meta-Learning (MAML) [5], pairing each
source domain with target domain, resulting in a total of D pairs. The meta-
learning process consists of an inner loop and an outer loop, iterating through
meta-learning steps (k = 1, . . . ,K). For the dth pair (d = 1, . . . , D), we train
task-specific parameters θ̃dk by minimizing both the classification loss and the
alignment loss using the support set of the dth source domain and the unla-
beled set of the target domain. We adopt cross-entropy loss as the classification
loss Lcls and contrastive-based loss [16] as the alignment loss Lalign. Once the
task-specific parameters (θ̃1k, . . . , θ̃

D
k ) are obtained in the inner loop for all pairs,

the outer loop updates the parameters of the feature extractor θk by validating
all task-specific parameters using the query set of the source domain and the
labeled set of the target domain, while minimizing both the classification loss
and the alignment loss. The meta-learning approach enables robust adaptation
to sparsely labeled data under limited supervision [6,9].

2.3 Decoupled Training for the Dataset-Specific Classifiers

After training the dataset-irrelevant feature extractor, we optimize dataset-
specific classifiers to address labeling inconsistencies across datasets. We in-
troduce decoupled training for the dataset-specific classifiers with parameters
ϕ1, . . . , ϕD, ψ, where ϕd corresponds to the classifier for the dth source domain,
and ψ is the classifier for the target domain. Unlike previous approaches [11,19]
that jointly update feature extraction and classification, we train the dataset-
specific classifiers independently from the feature extractor to accommodate
dataset-specific labeling criteria. During this stage, we freeze the feature ex-
tractor to prevent interference with dataset-irrelevant feature extraction [29].
Using the source domains and the labeled set of the target domain, we update
the parameters of the dataset-specific classifiers by minimizing the classification
loss Lcls separately for each dataset.
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Table 1. The detail of four fMRI datasets from different studies: the Human Connec-
tome Project (HCP) [26], the Baby Connectome Project (BCP) [12], the Whitehall II
Multi-band (WHII-MB6) [4], and the Whitehall II Standard (WHII-STD) [4].

Dataset Scanner TR(s) SR(mm3) # Subjects Age M/F # Samples # ICs # Signal ICs # Noise ICs

HCP [26] 3T Siemens
Connectome Skyra 0.7 2×2×2 25 22–35 years 8/17 100 22,877 2,326 20,551

BCP [12] 3T Siemens
Prisma 0.8 2×2×2 32 379 ± 186 days - 99 14,850 3,406 11,444

WHII-MB6 [4] 3T Siemens
Magnetom Verio 1.3 2×2×2 25 63–75 years 33% F 39 5,143 795 4,348

WHII-STD [4] 3T Siemens
Magnetom Verio 3.0 3×3×3 45 63–75 years 33% F 40 2,585 422 2,783

By alternating between meta-learning for the dataset-irrelevant feature ex-
tractor and decoupled training for the dataset-specific classifiers over K itera-
tions, our proposed framework progressively improves classification performance
while enhancing adaptation from fully labeled source domains to a sparsely la-
beled target domain, without compromising the dataset-irrelevant feature ex-
tractor.

3 Experiment and Discussion

3.1 Datasets and Experiment Settings

Datasets. We utilize four fMRI datasets: Human Connectome Project (HCP) [26],
Baby Connectome Project (BCP) [12], and two Whitehall II imaging study
datasets, multi-band (WHII-MB6) and standard (WHII-STD) [4], following pre-
vious approaches [11,19]. Table 1 shows the detail of the datasets, highlighting
inter-dataset variations, such as scanner types, temporal resolution, spatial res-
olution, subject age, and scan counts.

Experiment Settings. We employ 5-fold cross-validation by uniformly parti-
tioning samples into five folds. Performance metrics, including accuracy (ACC),
sensitivity (SEN), specificity (SPEC), F1-score (F1), and G-measure (GM), are
evaluated per sample [18]. Sensitivity measures the detection of signal ICs, while
specificity measures the detection of noise ICs. Since signal ICs are significantly
outnumbered by noise ICs, evaluating performance using the F1-score and G-
measure, which provide balanced evaluations of signal/noise IC classification, is
essential to ensure robust classification in imbalanced datasets.

Implementation Details. We set the batch size to 12, the number of iterations
to M = 10, and the feature dimension to 96. The training process alternates
between meta-learning for the dataset-irrelevant feature extractor and decoupled
training for the dataset-specific classifiers, iterating for a total of K = 300 cycles
to progressively optimize both components, with a learning rate of 0.01. Our
implementation is available on: https://github.com/KeunsooHeo/metaclean

https://github.com/KeunsooHeo/metaclean


6 K. Heo et al.

Table 2. Performance comparison for signal/noise IC classification with the baseline
model [19]. The upper table presents results in the sparsely labeled (10%) setting, while
the lower table provides results for the fully labeled (100%) setting across four fMRI
datasets. We present the mean ± standard deviation for accuracy (ACC), sensitivity
(SEN), specificity (SPEC), F1-score (F1), and G-measure (GM) on the target dataset.
We evaluate three settings by adding key components: (A) pretraining for the feature
extractor and classifier by jointly learning with the other datasets (PT), (B) meta-
learning for dataset-irrelevant feature extractor (ML), and (C) decoupled training for
dataset-specific classifiers (DT). A “!” indicates the inclusion of the component, while
“-” denotes its absence. The highest mean performance in each dataset-label condition
is highlighted in bold. Statistical significance compared to Setting (C) is determined
using the Wilcoxon signed-rank test (*p < 0.05, **p < 0.001) [30].

Label
Ratio

Target
Dataset Method Components Evaluation Metrics

PT ML DT ACC (%) SEN (%) SPEC (%) F1 (%) GM (%)

10%

HCP

Baseline [19] - - - 98.48±0.94∗∗ 91.61±8.38∗∗ 99.26±0.70∗ 92.36±4.94∗∗ 95.25±4.49∗∗

Setting (A) ! - - 98.58±1.18∗∗ 95.55±4.99∗∗ 98.92±1.31 93.37±5.03∗∗ 97.18±2.54∗∗

Setting (B) ! ! - 98.75±0.95∗ 95.55±6.15∗∗ 99.11±1.02 94.16±3.80∗∗ 97.26±3.13∗

Setting (C) ! ! ! 98.93±0.79 97.82±3.34 99.06±0.78 94.99±3.50 98.42±1.75

BCP

Baseline [19] - - - 96.13±2.02 86.21±14.33∗∗ 98.33±1.95 88.74±10.88∗ 91.63±8.57∗∗

Setting (A) ! - - 96.44±1.78 89.21±10.96 97.95±1.84 90.39±8.04 93.25±6.16
Setting (B) ! ! - 96.45±2.22 91.08±12.43 97.44±2.65 89.96±11.21 93.90±7.17
Setting (C) ! ! ! 96.60±1.78 90.01±11.91 97.92±1.99 90.55±9.47 93.61±6.75

WHII-MB6

Baseline [19] - - - 93.89±5.16∗∗ 75.70±22.13∗∗ 95.82±8.53∗ 78.01±17.86∗∗ 82.85±17.45∗∗

Setting (A) ! - - 98.71±1.12 95.04±4.66∗ 99.40±1.05 96.16±3.00 97.16±2.35∗

Setting (B) ! ! - 98.04±1.70∗∗ 94.42±5.74∗ 98.64±2.09 93.67±5.18∗ 96.45±2.96∗∗

Setting (C) ! ! ! 98.83±1.02 97.19±3.79 99.13±1.14 95.60±6.52 98.13±1.93

WHII-STD

Baseline [19] - - - 86.03±5.68∗∗ 0.00 ±0.00∗∗ 100.00±0.00∗∗ 0.00 ±0.00∗∗ 0.00 ±0.00∗∗

Setting (A) ! - - 95.03±3.12∗∗ 93.95±8.36∗ 95.30±3.63∗∗ 82.31±13.63∗∗ 94.49±4.22
Setting (B) ! ! - 96.88±2.88 81.63±17.67∗∗ 99.39±1.02 86.75±13.54 89.46±10.69∗

Setting (C) ! ! ! 97.67±1.82 91.12±9.25 98.90±1.69 91.07±6.69 94.79±4.82
Label
Ratio

Target
Dataset Method Components Evaluation Metrics

PT ML DT ACC (%) SEN (%) SPEC (%) F1 (%) GM (%)

100%

HCP

Baseline [19] - - - 99.31±0.53 97.07±3.92∗ 99.57±0.52∗ 96.71±2.47 98.29±1.96∗

Setting (A) ! - - 99.12±0.64∗ 97.09±3.66∗ 99.34±0.64 95.87±2.59∗∗ 98.19±1.83∗∗

Setting (B) ! ! - 99.21±0.67∗ 98.09±3.34 99.33±0.76 96.28±2.83∗ 98.69±1.66
Setting (C) ! ! ! 99.31±0.58 98.10±2.76 99.47±0.57 96.85±2.47 98.77±1.40

BCP

Baseline [19] - - - 96.02±2.20∗∗ 91.67±10.73∗ 96.78±2.59∗∗ 89.48±9.74∗ 93.96±6.09
Setting (A) ! - - 96.46±1.90 89.60±12.19 97.82±2.27 90.28±9.48 93.32±6.95∗

Setting (B) ! ! - 96.55±1.96 92.58±9.55∗∗ 97.11±2.98∗∗ 91.04±8.29 94.64±4.95
Setting (C) ! ! ! 96.69±1.79 90.18±12.42 98.00±1.79 90.56±9.92 93.71±7.24

WHII-MB6

Baseline [19] - - - 98.66±1.26∗ 94.40±6.23∗ 99.31±1.19 95.18±4.24∗ 96.77±3.27∗

Setting (A) ! - - 98.68±1.33∗ 96.30±5.21 99.01±1.57∗ 95.07±7.01∗ 97.60±2.71
Setting (B) ! ! - 98.72±1.38 95.79±4.52 99.38±1.32 95.17±7.94 97.54±2.44
Setting (C) ! ! ! 99.07±1.03 96.92 ±4.12 99.60±0.64 97.37±2.75 98.23±2.17

WHII-STD

Baseline [19] - - - 97.81±2.26∗ 87.35±13.81∗∗ 99.65±0.74∗ 91.27±9.06∗ 92.98±7.76∗∗

Setting (A) ! - - 98.10±1.53∗ 93.29±8.62 99.04±1.17 92.45±6.37∗ 96.00±4.54
Setting (B) ! ! - 97.73±2.58∗ 89.70±12.26∗ 99.35±1.45 91.95±8.33 94.15±6.84∗

Setting (C) ! ! ! 98.52±1.38 94.14±7.79 99.32±1.10 94.20±5.55 96.60±4.01

3.2 Performance Comparison

Table 2 presents a performance comparison of signal/noise IC classification be-
tween the baseline model [19] and our proposed framework under both sparsely
labeled (10%, top) and fully labeled (100%, bottom) conditions across four fMRI
datasets. The evaluation includes accuracy (ACC), sensitivity (SEN), specificity
(SPEC), F1-score (F1), and G-measure (GM). We assess the impact of three key
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components by progressively adding them. Setting (A) applies pretraining for the
feature extractor and classifier by jointly learning with the other datasets (PT),
Setting (B) extends this by introducing meta-learning for the dataset-irrelevant
feature extractor (ML), and Setting (C) further includes decoupled training for
the dataset-specific classifiers (DT). Statistical significance compared to Setting
(C) is determined using the Wilcoxon signed-rank test [30].

In the sparsely labeled (10%) condition, the baseline model demonstrates
strong specificity but suffers from low sensitivity, particularly in the WHII-STD
dataset, where it completely fails to detect positive samples (0%) due to the lack
of labeled data. Setting (A) partially mitigates this issue, improving sensitivity
(SEN = 93.95%) in the WHII-STD dataset. Setting (B) further enhances ro-
bustness, achieving the highest sensitivity (SEN = 91.08%) in the BCP dataset.
Setting (C) shows the outstanding performance, achieving the highest accuracy
across datasets. Notably, in the HCP dataset, our proposed framework achieves
98.93% accuracy, 97.82% sensitivity, and 98.42% G-measure, surpassing all other
settings.

In the fully labeled (100%) condition, the baseline model achieves high speci-
ficity. However, its sensitivity remains relatively low. Setting (A) results in slight
improvements in sensitivity, but jointly training with the other datasets does
not always enhance performance due to variations in noise characteristics and
inconsistencies in labeling criteria. For instance, in the HCP dataset, Setting (A)
slightly reduces accuracy (99.12%) compared to the baseline (99.31%). Setting
(B) further improves sensitivity and F1-score across most datasets, particularly
in the BCP dataset, where sensitivity increases to 92.58% and F1-score increases
to 91.04%. Setting (C) achieves the highest accuracy, sensitivity, F1-score, and
G-measure across most datasets, with the notable improvements observed in the
WHII-STD dataset (SEN = 94.14%, GM = 96.60%).

In several cases, our proposed framework in the 10% labeled condition achieves
performance exceeding that of the baseline in the 100% labeled condition. In the
WHII-MB6 dataset, Setting (C) in the 10% labeled condition achieves 95.60%
F1-score and 98.13% G-measure, outperforming 95.18% F1-score and 96.77%
G-measure of the baseline in the 100% labeled condition. These results demon-
strate that our proposed framework achieves outstanding performance compared
to previous approaches and effectively adapts to sparsely labeled datasets.

3.3 Visual Evaluation

To further validate the effectiveness of our proposed framework in fMRI denois-
ing, we conduct a qualitative comparison between our proposed framework and
the baseline model [19] on a sample from the HCP dataset under the 10% labeled
condition, as shown in Fig. 2. The visualization includes three input modalities:
the IC spatial map, its corresponding IC time series, and the wavelet-transformed
image, which is generated from the IC time series using a learnable wavelet ker-
nel [19]. Additionally, we generate explanation maps using Grad-CAM [25] to
highlight the regions that contribute most to classification decisions.
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Fig. 2. Visual evaluation comparing the baseline model [19] and our proposed frame-
work on a sample from the HCP dataset under the 10% labeled condition. The vi-
sualization includes three modalities: (a) IC spatial map, (b) IC time series, and (c)
wavelet-transformed image. The bottom table presents classification results alongside
expert annotations. Additionally, explanation maps are generated using Grad-CAM [25]
to highlight the regions most influential in the model’s classification decisions.

The IC spatial maps for both the baseline model and our proposed framework
(ours) capture similar positive clusters in the primary visual cortex of the brain
caused by neuronal activity, confirming that both models can detect significant
fMRI signal patterns. However, the baseline model incorrectly classifies a signal
IC as a noise IC, whereas our proposed framework correctly identifies it as a
signal IC. This suggests that our proposed framework effectively adapts to a
sparsely labeled dataset.

4 Conclusion

In this study, we propose a meta-learning-based semi-supervised domain adap-
tation framework for fMRI denoising, enabling the learning of dataset-irrelevant
features from sparsely labeled datasets by leveraging existing labeled datasets.
To address inter-dataset variations and inconsistencies in labeling criteria, we
adopt meta-learning to extract dataset-irrelevant features and employ a decou-
pled training strategy to optimize dataset-specific classifiers. Experimental re-
sults on four fMRI datasets demonstrate that our proposed framework achieves
outstanding performance in both sparsely labeled and fully labeled conditions.
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