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Abstract. Medical image segmentation is crucial for various clinical
applications, and deep learning has significantly advanced this field.
To further enhance performance, recent research explores multimodal
data integration, combining medical images and textual reports. How-
ever, a critical challenge lies in image data augmentation for multimodal
medical data, specifically in maintaining text-image consistency. Tradi-
tional augmentation techniques, designed for unimodal images, can intro-
duce mismatches between augmented images and text, hindering effec-
tive multimodal learning. To address this, we introduce Region-Based
Text-Consistent Augmentation (RBTCA), a novel framework for co-
herent multimodal augmentation. Our approach performs region-based
image augmentation by first identifying image regions described in asso-
ciated text reports and then extracting textual cues grounded in these
regions. These cues are integrated into the image, and augmentation is
subsequently performed on this modality-aware representation, ensur-
ing inherent text-cue consistency. Notably, the RBTCA’s plug-and-play
design allows for straightforward integration into existing medical im-
age analysis pipelines, enhancing its practical utility. We demonstrate
the efficacy of our framework on the QaTa-Covid19 and our in-house
Lung Tumor CT Segmentation (LTCT) datasets, achieving substantial
gains, with a Dice coefficient improvement of up to 7.24% when inte-
grated into baseline segmentation models. Our code will be released on
https://github.com/KunyanCAI/RBTCA.

Keywords: Medical Image Segmentation · Data Augmentation · Mul-
timodal Learning · Text-Image Consistency.
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1 Introduction

Medical image segmentation has become a critical component of modern health-
care, playing an increasingly important role in diagnosis, treatment planning,
and disease monitoring across various modalities such as X-ray, CT, and MRI.
The application of deep learning techniques has revolutionized this field, leading
to remarkable advancements in automated medical image segmentation [2, 3, 10,
13]. To further enhance the performance and clinical applicability of these seg-
mentation systems, recent research has explored the integration of multimodal
data [5, 8], particularly combining medical images with associated textual reports
like radiology reports and clinical notes [16]. These multimodal data sources offer
complementary information and hold significant promise for achieving a more
comprehensive and nuanced understanding of medical images, ultimately leading
to improved segmentation performance and clinical utility [7, 12, 19, 22].
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Fig. 1. Overview our proposed RBTCA framework and illustration of multimodal mis-
match. (A): Visualized workflow of RBTCA. (B): Illustration of the semantic mismatch
problem in multimodal data augmentation.

To effectively train deep learning models, especially in data-scarce domains
like medical imaging, data augmentation is an indispensable technique. Data
augmentation serves as a crucial strategy to synthetically increase the training
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dataset by applying various transformations to existing data, thereby mitigating
the challenges of limited annotated data, reducing overfitting, and enhancing the
generalization capability of deep learning models [4, 14, 18, 23]. This is particu-
larly vital in medical image segmentation, where acquiring large, diverse, and
expertly annotated datasets is often hindered by factors such as data scarcity,
high annotation costs associated with expert radiologists, and stringent patient
privacy regulations [6, 24]. Traditional augmentation strategies, such as geomet-
ric transformations (e.g., rotation, flipping) and intensity adjustments (e.g., noise
injection, contrast enhancement), have proven effective in unimodal settings by
improving model generalization and reducing overfitting [14, 23]. Similarly, in
multimodal contexts involving paired image-text data (e.g., radiology reports
with X-rays), basic text augmentation techniques like synonym replacement or
word deletion are occasionally applied [11, 15]. Yet, these methods operate in
isolation, treating image and text modalities as independent streams. As illus-
trated in Figure 1 (Part B), this isolation introduces semantic inconsistencies:
for instance, flipping an X-ray image horizontally while retaining a textual de-
scription of "infections in the lower right lung" creates a mismatch between
the augmented image and its report. Such discrepancies, quantified in Table 1,
degrade the quality of multimodal training data, confuse models during joint
representation learning, and ultimately limit segmentation accuracy.

Current augmentation frameworks fail to address a critical question: How
can we ensure semantic alignment between augmented images and their asso-
ciated textual descriptors in multimodal medical data? Most methods either
focus solely on images, ignore modality interactions, or require extensive archi-
tectural modifications to segmentation networks. This limits their practicality, as
medical imaging pipelines often rely on standardized, pre-trained models (e.g.,
U-Net [13]) that cannot be easily redesigned for modality-aware augmentation.

Table 1. Dice (%) for QaTa-Covid19 Segmentation in different augmentation modality.

Model Modalities Augmentation Modalities

None Image Text Image+Text

SwinUnet Image 71.08 74.01 - -

LViT Image+Text 76.98 76.70 76.60 76.89

To bridge this gap, we propose Region-Based Text-Consistent Augmenta-
tion (RBTCA), a novel, plug-and-play framework designed to harmonize multi-
modal augmentations while preserving semantic consistency. Unlike prior work,
RBTCA operates as a lightweight preprocessing module, requiring no architec-
tural changes to existing segmentation networks. Our approach leverages text-
guided regional cues to align augmentations across modalities: (1) it identifies
image regions (e.g., anatomical structures) corresponding to textual descrip-
tions (e.g., "right lung"), (2) embeds these cues into the image to create a
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modality-aware representation (MAR), and (3) applies data augmentations to
this modality-aware representation. This ensures that transformations, such as
geometric or intensity adjustments (e.g., flipping, noise injection), are consis-
tently applied to both the image and its embedded textual cues, thus eliminating
potential semantic mismatches. The key contributions of this work are threefold:

1) A Plug-and-Play multimodal augmentation framework: We pro-
pose RBTCA, a novel data augmentation strategy specifically designed for mul-
timodal medical data, enabling seamless integration with diverse architectures
(e.g., CNNs, Transformers) without structural modifications.

2) Effortless multimodal consistency with standard augmentation:
RBTCA achieves multimodal consistency by directly leveraging off-the-shelf im-
age augmentation methods, eliminating the need for modality-specific redesign.

3) Open-source implementation and empirical validation: RBTCA
will be released as an open-source toolkit for adoption and reproducibility. Em-
pirical validation across diverse architectures and datasets (QaTa-COV19, LTCT)
demonstrates significant performance gains over baselines, validating its effec-
tiveness and generalizability for multimodal medical image segmentation.

2 Methods

The RBTCA framework, visually detailed in Figure 1 (Part A), achieves text-
consistent data augmentation for multimodal medical image segmentation through
a streamlined process. Initially, the framework maps a textual description T
into a spatially aligned textual prompt CT ∈ R1×H×W×(D). After that, with
CT ’s integration into the framework, it identifies a text-guided region of interest
(ROI) probability map RI ∈ [0, 1]1×H×W×(D) to precisely localize the image
area semantically corresponding to the textual description. Following this, the
framework integrates the textual prompt CT and ROI RI with the original med-
ical image I ∈ RC×H×W×(D), generating a MAR IMAR ∈ RC′×H×W×(D) that
incorporates text-derived cues. Subsequently, image augmentation techniques A
are applied to IMAR and its label to produce augmented data (I ′MAR, label

′) =
(A(IMAR),A(label)), which is then used to train a segmentation model Sθ, learn-
ing a mapping Sθ(I

′
MAR) → pred′ from augmented cue-enhanced images to pre-

dicted segmentation masks.

2.1 Text-to-Image Space Mapping and Region of Interest Selection

This stage aims to derive two key components from the input textual description
T and the medical image I to a textual prompt in the image spatial space, CT ,
and a text-guided ROI, RI .

Textual Prompt Generation (T → CT ) To generate the textual prompt CT

from the input textual description T , we first tokenize T using a pre-trained tok-
enizer, Token(·), converting the text into a sequence of tokens. Next, we utilize a
pre-trained BERT-base-uncased model with its parameters unfrozen, EBERT (·),
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trained for our task, to encode the tokenized sequence into a contextualized text
embedding, eT ∈ RL×dT . The text embedding can be computed as:

eT = EBERT (Token(T )), (1)

where dT is the dimensionality of the BERT embedding, and L is the sequence
length of the tokenized text. To map this text embedding into a spatially struc-
tured textual prompt, we employ an Embedding Mapping Block, MEMB(·) :
RL×dT → R1×H×W×(D). Specifically, MEMB comprises three sequential layers
followed by a Multilayer Perceptron layer at the end. Each layer within MEMB

consists of: a 1-dimensional convolutional layer operating across the text em-
bedding dimension (dT ), followed by another 1-dimensional convolutional layer
operating across the sequence length dimension (L), Batch Normalization, and
ReLU activation. We then reshape the output of MEMB to obtain the textual
prompt CT ∈ R1×H×W×(D):

CT = MEMB(eT ). (2)

Text-Guided Region of Interest Selection ((I, CT ) → RI) To extract
the text-guided ROI RI , we employ a Region of Interest Extraction Module,
MROIE(I, CT ), which takes both the medical image I and the textual prompt
CT as inputs. In the implementation of MROIE , both the medical image I and the
textual prompt CT are first patchified into patch sequences and then projected
into Query (Q), Key (K), and Value (V) representations with learnable linear
layers. Thus, for the image I and textual prompt CT , we obtain query, key, and
value representations as (QI ,KI , VI) and (QCT

,KCT
, VCT

), respectively.
Subsequently, we utilize a cross-attention mechanism based on Agent atten-

tion[9]. Specifically, the average-pooled image query, A = AvgPool(QI), acts as
the "Agent" matrix. The region of interest RI is then computed as:

RI = MROIE(I, CT ) = σ(σ(AQT
CT

)σ(AKT
CT

)VCT
), (3)

where σ denotes the sigmoid activation function. MROIE allows the textual
prompt CT to attend to spatially relevant locations in the image I, highlighting
the region RI that is semantically most relevant to the text description T . The
output RI ∈ [0, 1]H×W×(D) indicating the region of interest.

2.2 Text-image Consistent Augmentation (TCA)

Following the previous stage, we proceed to create a MAR, IMAR, by integrat-
ing the textual prompt CT and the ROI RI with the original medical image
I. As CT and RI are spatially aligned with I, the cue-enhanced image IMAR

is readily generated through a simple channel-wise concatenation. Specifically,
we concatenate the textual prompt CT and the region of interest mask RI as
additional channels to the original medical image I.

IMAR = I ⊕ CT ⊕RI , (4)
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where ⊕ denotes channel-wise concatenation.
Consequently, we can directly apply standard image augmentation techniques

to the cue-enhanced image IMAR and its corresponding segmentation label, en-
suring no conflict arises between the augmented image and its associated textual
prompt. Specifically, we employ a set of common image augmentation transfor-
mations A = {Random Flip, Random Rotation, CutMix [21]}. For each train-
ing sample (IMAR, label), a randomly selected subset Aselected ⊆ A of these
transformations is applied consistently to both IMAR and label to generate the
augmented data pair (I ′MAR, label

′). The augmentation process is formally rep-
resented as:

(I ′MAR, label
′) = Aselected(IMAR, label). (5)

2.3 Segmentation Model Training and Loss Function

Our framework leverages two key components, the textual prompt CT and ROI
RI , for modality-aware representation generation. To train these components,
we employ Binary Cross-Entropy loss as auxiliary losses (Laux), applying it to
both CT and RI with respect to the ground truth. This ensures effective learning
of text-to-image space mapping and text-guided region identification.

For segmentation model training, we utilize the augmented modality-aware
representation I ′MAR and their labels. We employ a standard composite loss
function for medical image segmentation, Lseg, which combines the Dice loss
(LDice) and the Cross-Entropy loss (LCE) with a weighting factor λ. The loss
function can be represented as:

Lseg = λLDice + (1− λ)LCE (6)

Ltotal = Lseg + Laux. (7)

3 Experiments and Results

3.1 Experimental Setup

Datasets and Evaluation Metrics. To validate the effectiveness of RBTCA,
we utilized two datasets: the QaTa-COV19 dataset and our in-house Lung Tu-
mor CT Segmentation (LTCT) dataset. The QaTa-COV19 dataset, compiled
by researchers from Qatar University and Tampere University, comprises 9258
chest X-ray radiographs from COVID-19 patients, featuring expert annotations
of COVID-19 lesion regions and text annotations for multimodal research, as
released by Li et al. in LViT [12]; these images have a resolution of 224×224 pix-
els and were used with the dataset splits from LViT. Additionally, our in-house
LTCT dataset, consisting of 143 unenhanced CT scans from 95 patients, pro-
vides tumor region annotations and diagnostic reports. Originally at a 512×512
xy resolution with variable slice thicknesses, the LTCT dataset’s CT images were
preprocessed to achieve an isotropic spacing of 1×1×1 mm3, axially cropped
to 320 slices, windowed to [−700, 900] HU, and linearly normalized to [0, 1].
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The LTCT dataset was randomly divided into training (120 scans) and testing
(23 scans) sets. For quantitative evaluation, we employed the Dice Similarity
Coefficient (Dice) and mean Intersection over Union (mIoU) metrics to assess
segmentation performance.

Implementation Details. For image segmentation, we utilized six segmenters:
unimodal Unet [13], Swin-Unet [1], ConvNeXt [17], and multimodal LViT [12],
ASDA [20], ReMamber [19]. All models were trained in a fully supervised man-
ner for 1000 epochs using the AdamW optimizer with a learning rate of 3e-4.
To prevent overfitting, we employed early stopping, stopping training after 50
epochs without Dice improvement. The weighting factor λ in the loss function is
set to 0.5 based on preliminary validation (λ ∈ {0.1,0.5,0.9}), and we found that
λ=0.5 balanced Dice and CE losses and yielded strong performance. We used
batch sizes 64 for QaTa-Covid19. And for the LTCT dataset (3D CT volumes),
we used a batch size of 1 during RBTCA modules’ training, and 64 for segmenter
training on xy-planar slices for segmenter training. To validate the effectiveness
of RBTCA in 3D segmentation, we also employed 3D U-Net [3] as the segmenter
on the LTCT dataset with a batch size of 1.

3.2 Results of Segmentation Performance Evaluation

Comparison with Baseline Methods. To evaluate our module’s effective-
ness, we compared segmentation performance against baseline models. We first
established baselines by assessing six segmenters on both datasets: unimodal
Unet, Swin-Unet, ConvNeXt, and multimodal LViT, ASDA, ReMamber. Then,
we evaluated performance with our module integrated into these baselines to
demonstrate improvements. Detailed results are in Table 2.

The results show that integrating RBTCA significantly improved both uni-
modal and multimodal segmenters on QaTa-Covid19 Dataset. SwinUnet showed
the largest gain, with Dice increasing by 7.24% to 78.32% and mIoU by 8.39%.
LViT achieved the best performance, reaching a Dice of 81.19%. On the LTCT
dataset, Unet with RBTCA showed a substantial Dice increase from 72.16%
to 80.54%. Furthermore, using 3D U-Net as a segmenter also benefited from
RBTCA, with Dice improving from 64.67% to 71.08%

Ablation Study. To assess each component’s contribution, we performed an
ablation study. Table 2 shows segmentation performance with incremental addi-
tion of MAR and TCA. For unimodal models, both MAR and TCA improved
performance. For example, Unet saw a 2.98% Dice increase with MAR and a
further 1.53% with TCA. For multimodal models, MAR significantly improved
performance (e.g., LViT by 4.21% Dice). However, TCA slightly decreased per-
formance for multimodal models due to potential text-image feature mismatch.
That could be explain as TCA’s consistency fusion not aligned with original
text, which by default inputs to the multimodal segmenter, negatively impact-
ing performance. Thus, we recommend MAR + TCA for unimodal integration
and primarily MAR for multimodal integration.
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Table 2. Results on the QaTa-Covid19 and Lung Tumor CT Dataset. MAR: Modality-
Aware Representation; TCA: Text-Consistent Augmentation.

Backbone Text Modules QaTa-Covid19 Lung Tumor CT

MAR TCA mIoU (%) ↑ Dice (%) ↑ mIoU (%) ↑ Dice (%) ↑

× × × 75.56±0.22 64.89±0.24 72.16±0.23 60.66±0.21
U-Net ✓ ✓ × 78.54±0.18 67.86±0.22 77.47±0.19 66.23±0.23

✓ ✓ ✓ 80.09±0.18 69.98±0.21 80.54±0.23 70.08±0.25

× × × 71.08±0.23 59.57±0.25 66.25±0.21 52.61±0.21
SwinUnet ✓ ✓ × 77.96±0.19 67.15±0.22 71.31±0.22 57.34±0.23

✓ ✓ ✓ 78.32±0.20 67.96±0.23 72.82±0.19 59.65±0.22

× × × 73.99±0.21 62.70±0.24 71.80±0.24 58.84±0.23
ConvNext ✓ ✓ × 77.96±0.19 67.15±0.22 72.01±0.21 59.45±0.22

✓ ✓ ✓ 78.32±0.20 67.96±0.23 74.53±0.20 62.03±0.23

✓ × × 76.98±0.21 66.43±0.23 74.85±0.17 63.73±0.20
LViT ✓ ✓ × 81.19±0.17 71.23±0.20 81.08±0.18 71.54±0.21

✓ ✓ ✓ 80.23±0.18 70.21±0.21 80.11±0.17 70.44±0.23

✓ × × 77.61±0.19 66.65±0.21 74.39±0.18 62.96±0.22
ASDA ✓ ✓ × 78.15±0.18 66.92±0.21 75.36±0.17 63.79±0.21

✓ ✓ ✓ 78.09±0.19 67.21±0.21 74.98±0.18 62.87±0.22

✓ × × 79.12±0.18 68.67±0.21 79.57±0.18 68.44±0.21
ReMamber ✓ ✓ × 81.03±0.17 70.91±0.20 80.33±0.19 71.06±0.22

✓ ✓ ✓ 79.24±0.19 69.99±0.22 80.01±0.20 70.81±0.23

× × × - - 64.67±0.24 52.28±0.26
3D Unet ✓ ✓ × - - 65.40±0.23 52.46±0.24

✓ ✓ ✓ - - 71.08±0.21 62.21±0.23

Unet SwinUnetRBTCA+Unet LViTRBTCA+SwinUnet RBTCA+LViTImage Ground True Text
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Fig. 2. Visualized result on the QaTa-Covid19 Dataset.
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4 Conclusion

This work introduces RBTCA, a novel framework addressing multimodal med-
ical image data augmentation. RBTCA, embeddable by design, achieves coher-
ent augmentation via modality-aware representation and inherent text-image
consistency. Key contributions are: (1) a plug-and-play framework for seamless
integration, (2) broadly applicable multimodal consistency via standard image
augmentation, and (3) significant, generalizable performance gains in segmenta-
tion. Extensive evaluations on diverse datasets validate RBTCA’s effectiveness
in enhancing segmentation accuracy. In summary, RBTCA presents a practi-
cal, effective approach to robust multimodal augmentation, contributing to im-
proved deep learning model training and potentially enhanced clinical utility.
Future research will explore RBTCA’s versatility across medical imaging tasks
and modalities.
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